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ABSTRACT 

Piecewise-linear switching functions are investigated for minimum- 

time regulator systems represented by a linear, constant parameter plant 

and a single controller. It is assumed that the plant transfer function 
has only poles and that the controller is an ideal contactor. Consider- 

ation is limited to switching functions which are the sum of linear or 

piecewise-linear functions of single variables. 

A performance criterion is defined in terms of the response times 
for a number of initial conditions. Optimal linear and piecewise-linear 

switching functions are found by searching the surface relating the 

performance criterion and the undetermined switching function parameters. 

It is shown that the initial conditions used to define the criterion 

function have a substantial effect upon the smoothness of the perform- 

ance surface. Methods are given for selecting the initial conditions 

used to define the criterion function so that the performance surface 

is amenable to standard surface searching procedures. 

A qualitative method based upon root-locus techniques and the exist- 

ence of certain periodic solutions is given for designing sub-optimal 

linear switching functior,s, in order to initiate the search of the 

performance surface in a region where the surface exists and for deter- 

mining which components of the switching function should be made piece- 

wise-linear functions. 

The design methods are illustrated by synthesizing piecewise-linear 

switching functions which yield close-to-optimal step-function responses 

for third- and fourth-order plants having all of their poles on the 

imaginary axis of the s-plane. These plants were chosen because they 

are inherently more difficult to control than plants having well-damped 

poles. The qualitative design procedures are applied also to a third- 

order plant having well-damped poles. 

It is concluded that easily-implemented, piecewise-linear Switching 

functions can provide close-to-optimal response for a wide variety of 

plants and initial conditions. The design procedures are applicable to 

plants of high-order, although, for plants of dominant fifth- or higher- 

order, the design of optimal piecewise-linear switching functions leads 

to a surface searching problem of considerable complexity. +!I i ,JTfcdL 
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I. INTRODUCTION 

- 
1 

+e - 
0 

sn-l+ ...+ a n 
+ an-l 

a c  
? 

L 

A .  PROBLEM STATEMENT 

The problem under consideration is the design of a switching func- 

tion for the feedback control system shown below.* The plant, whose 

transfer function contains only poles, is described by the nth-order 

linear constant-coefficient differential equation 

e = Fe + Du - - - (1.1) 

where e is an n x 1 column state vector, - 
F is a known n x n system matrix, 

D is a known n x 1 distribution matrix of the control u, 
u 
- 

is a bounded scalar with tu)< 1, - 

and the feedback is obtained by having u = -sgn de). The n-com- 

ponent state vector e may be the error variable e and its first 

(n-1) derivatives or the state variables of two or more coupled plants 

of lower-order. It will be assumed that all components of e can be 

- 

- 

* 
Double lines denote a vector variable, single lines a scalar. 
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observed and controlled. The above System can represent either a regu- 

lator process with zero input and non-zero initial conditions which are 

to be reduced to the state-space Origin or a control process with an 

input function having one or  more eigenvalues identical to those in the 

plant, which implies that the input can be imbedded and treated as an 

initial condition on the error State vector. 

The system is essentially deterministic in that it is not subject 

to disturbances. However, the initial conditions o r ,  equivalently, the 

imbeddable inputs may be random. The fact that the output of the actu- 

ator o r  controller is bounded implies the existence of a minimum time 

in which the initial conditions may be reduced to zero and it is this 

time which will be taken as the criterion of performance. Consideration 

will be limited to contactor, i.e., bang-bang, actuators f o r  the follow- 

ing reasons: 

1. Many actuators inherently operate in this manner. 

2. Saturating linear actuators which operate in the saturated 
mode a large percentage of the time are well approximated 
by contactors. 

3. The optimal control leading to the minimum-time response of 
the system described by Eq. (1.1) is bang-bang. 

The differential equation representing the physical. plant has been 

normalized with respect to the magnitude of the control force so that 

1.1 = 1. 

the switching function a(e> 
as to minimize the performance criterion. Equivalently, the problem is 

to find an (n-1)-dimensional switching surface described by D = 0 

which separates the n-dimensional state-space into two regions, one 

where u = i-1, the other where u = -1. 

Assuming that Eq. (1.1) is known, the problem is to determine 

as a function of the state variables so 

B. PRXVIOUS WORK 

Pontryagin and his co-workers [Ref. 11 have given necessary condi- 

tions which an optimal control function u(t> must satisfy under the 

assumptions described above. However, this optimal control is given in 

terms of the adjoint variables whose functional form is known but whose 

-2- 



v a l u e s  are unknown. Using the  form of  t h e  a d j o i n t  v a r i a b l e s  t h e  opt imal  

swi tch ing  su r face  can be constructed f o r  some r e l a t i v e l y  s imple p l a n t s  

(second-and th i rd-order )  bu t  even then t h e  switching func t ion  might have 

such a complicated dependence upon t h e  state v a r i a b l e s  as t o  be u s e l e s s  

as an engineer ing  s o l u t i o n .  

Therefore ,  a t t e n t i o n  has been given t o  quasi-optimal swi tch ing  func- 

t i o n s  which g ive  less than optimal performance bu t  may be more f e a s i b l e  

t o  implement than t h e  t r u e  optimal func t ion .  Hubbs [Ref. 21 has  used a 

swi tch ing  su r face  descr ibed  by the f i r s t  few terms of a Taylor -ser ies  

expansion of t he  opt imal  s u r f a c e  about t h e  s ta te -space  o r i g i n .  Although 

t h i s  technique i s  v a l i d  f o r  systems less res t r ic t ive  than those  under 

cons ide ra t ion  h e r e ,  i t  is  f e a s i b l e  f o r  only second-and th i rd-order  p l a n t s  

and works w e l l  on ly  when t h e  norm of e (denoted by Ilell - i s  s m a l l ,  

s a y  11~?11 < 1ul . Schmidt [Refs. 3 , 4 ]  has  t r e a t e d  s a t u r a t i n g  l i n e a r  s y s -  

t e m s  sub jec t  t o  s t e p  i n p u t s  by making the  feedback ga ins  of  one o r  more 

of t h e  s ta te  v a r i a b l e s  be nonl inear  func t ions  such t h a t  t h e  a c t u a t o r  

comes out  of s a t u r a t i o n  a t  the  same t i m e  t h e  equ iva len t  opt imal  con- 

t a c t o r  s y s t e m  would swi tch  f o r  the f i r s t  t i m e .  However, when the  p l a n t  

has l i g h t l y  damped o s c i l l a t o r y  roo t s  t h e  des ign  method i s  not  app l i cab le .  

Numerous au tho r s  have suggested using t h e  opt imal  swi tch ing  s u r f a c e  near  

t h e  o r i g i n  and r ep lac ing  i t  by l inear segments i n  t h e  more d i s t a n t  re- 

g ions  of  the  s t a t e - space ,  such as descr ibed  by Feld'baum [Ref.  51 . 

- 

Nonlinear func t ions  use fu l  fo r  p l a n t s  having l i g h t l y  damped o s c i l -  

l a t o r y  r o o t s  and s u b j e c t  t o  l a r g e  d i s tu rbances ,  s a y  

been considered by F l s g g e - h t z  and T i t u s  [Ref.  61 , but  some o t h e r  pro- 

v i s i o n  must be made f o r  s m a l l  d i s turbances .  

[Ref .  71 used t h e  switching funct ion 

good s tep- func t ion  response f o r  t h e  p l a n t  w i th  t r a n s f e r  func t ion  

l/s(s + 1) by a d j u s t i n g  f ( 6 )  so t h a t  t h e  f i r s t  swi tch ing  t i m e  w a s  

op t imal .  However, t h e  performance w a s  found t o  d e t e r i o r a t e  r a p i d l y  

when t h e  i n i t i a l  va lues  of e and e were not  p r e c i s e l y  zero. The 

s imples t  p o s s i b l e  swi tch ing  func t ion ,  f i r s t  s tud ied  by Flagge-Iotz 

[Ref .  81 , i s  l i n e a r  swi tch ing ,  where 0 is a l i n e a r  combination of 

t h e  states,  i . e . ,  0 = p e , where gT i s  t h e  t ranspose  of p. This  

> 1.1 , have 

Fliigge-Lotz and Lindberg 

0 = e + k e + f ( & > e "  t o  o b t a i n  

2 

1. 

T 
- 
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relationship corresponds to the switching surface being a single plane 

in the n-dimensional state-space. Lf the optimal trajectory from a par- 
ticular initial condition requires only (n-1) switchings, it is usu- 

ally possible for a linear switching function to provide an optimal 

response f o r  that initial condition and any others requiring the same 

switching points by passing a plane (or  hyperplane) through the (n-1) 

switching points and the origin. Flflgge-Lotz et al. [Refs. 7 ,  9, 101 

have shown that for some parameter combinations of the general third- 
2 order plant l/(s + a ) ( s  + 25 s + 1) the values of the optimal linear 

switching coefficients remain relatively constant for initial conditions 

along a large portion of the e axis and the linear switching function 

can yield good performance. However, for many plant parameter values 

and f o r  more general initial conditions, linear switching is unsatis- 

factory. 

* 

Therefore, one is led to consider piecewise-linear (hereafter abbre- 

viated PWL) switching functions in an effort to provide close-to-optimal 

response fo r  initial conditions in all o r  a relatively large portion of 

the state-space while retaining much of the simplicity of linear switch- 

ing. 

C .  OUTLINE OF CHAPTERS 

In Chapter 11, PWL switching functions are described using a second- 

order plant as an example. The mathematical formulation given implies 

the existence of a performance surface which can be searched to find 

* 
Necessary and sufficient conditions for linear switching to yield 

an optimal trajectory requiring (n-1) switchings are that: 

1. The switching plane contains the (n-1) switching points and 
the origin. 

2. Those portions of the optimal trajectory corresponding to 
u = +1 lie on one side of the switching plane and those 
corresponding to u = -1 lie on the other side. 

An example where (2) cannot be satisfied is the plant with transfer func- 
tion 1/s2(s2+ 1) and the initial state (go)T= (20, 0, 0, 0). 

-4 - 



those  switching func t ion  parameter va lues  which w i l l  y i e l d  t h e  minimum 

cost.  I n  Chapter I11 i t  i s  shown how t o  analyze q u a l i t a t i v e l y  t h e  sys- 

t e m  performance wi th  a l i n e a r  switching func t ion  i n  o rde r  to  o b t a i n  a 

s t a r t i n g  p o i n t  f o r  search ing  t h e  performance su r face .  A l s o  the  q u a l i t a -  

t i v e  a n a l y s i s  i s  extended t o  PWL switching func t ions .  Chapters  I V  and 

V i l l u s t r a t e  the  design procedure and t h e  type of r e s u l t s  which might 

be expected by syn thes i z ing  PWL switching func t ions  f o r  t h i r d -  and 

four th-  o rde r  p l a n t s .  The p l a n t s  considered i n  d e t a i l  are descr ibed  

by t r a n s f e r  func t ions  which have a l l  of t h e i r  po le s  on the  imaginary 

a x i s  of the s-plane,  thereby insur ing  t h a t  they cannot be t r e a t e d  a s  

p l a n t s  having dominant poles of a lower o r d e r .  Chapter V I  c o n s i s t s  of 

a summary of the r e s u l t s  obtained and sugges t ions  f o r  f u t u r e  inves t iga -  

t ion .  

I t  is  shown t h a t  PWL switching func t ions  which are e a s i l y  imple- 

mentable can g ive  close-to-optimal responses  f o r  a v a r i e t y  of p l a n t s  

and i n i t i a l  cond i t ions  and both q u a l i t a t i v e  and q u a n t i t a t i v e  procedures 

are given f o r  t h e  design of l i n e a r  and PWL switching func t ions .  I t  i s  

f e l t  t h a t  t h i s  work w i l l  he lp  to  br idge t h e  gap between t h e  f i e l d s  of 

opt imal  c o n t r o l  t h e o r y  and con t ro l  sys t em des ign ,  p a r t i c u l a r l y  i n  the  

area of satell i te a t t i t u d e  and t r a j e c t o r y  c o n t r o l .  
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11. PERFORMANCE SURFACES FOR PWL SWITCHING FUNCTIONS 
AND THE MINIMUM-TIME CRITERION 

A .  PWL SWITCHING 

Since a general PWL function of n variables can be extremely 

complicated to generate and analyze and since the main purpose in con- 

sidering PWL switching functions is to achieve a function which is 

easily implemented, consideration will be limited to only a very re- 

strictive subclass of PWL functions. This class will consist of those 

functions which are the summation of up to n symmetric PWL functions 
of single state variables, where n is the order of the plant. In 

other words, the switching function 0 will be limited to the class 

where one or  more of the 

type shown in Fig. 1. 

Gi(ei) may be symmetric PWL functions of the 

is the slope of the Pi 1 Examination of Fig. 1 indicates that 

central portion of 

that 

If the ith component of a is not PWL then only p is defined and 

pi2, pi,, pi4, Pis, etc. are undefined for that particular switching 
function. Since the output of the switching function 0 goes directly 

to the contactor, 0 can be multiplied by any positive constant without 

affecting u(t) or, equivalently, 

of e can be set equal to unity. It is convenient to arrange all of 

the switching function parameters 

elements which are both defined and arbitrary contained in n rows and 

a number of columns dependent upon the maximum number of breakpoints in 

. For example, if the switching function for a any single component 

third-order plant had its 

o2 and O3 were linear functions, the array of switching function 

ai, that pi29 pi4, etc. are the breakpoints, and 
piy pis, etc. are the slopes after the corresponding breakpoints. 

il 

the linear switching coefficient pnl’ 

n’ 
in the array { p )  having r Pij 

‘i 

Gl component defined as in Fig. 1 and both 
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slope = p 7 

e Pi2 Pi4 i 

FIG. 1. TYPICAL PWL SWITCHING-FUNCTION COMPONENT 

parameters would have r = 6 and 

p 1 1  

EP) = { pal 

would appear as 

P12 P13 X p14 :15] 

X X X X 

X X 

where the x's denote undefined elements. 

It should be emphasized that the array (P) , being merely a collec- 
tion of numbers, is not a matrix and thus has - no algebraic properties. - 
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In the case of linear switching, the switching function may be 

written as 

where Q is the parameter vector, i.e., column matrix, whose n com- 

ponents are the linear switching coefficients and it obeys the laws of 

matrix algebra. If the PWL switching function corresponding to the 

array [ p ]  is considered to be a linear switching function represented 

by the vector p which was made PWL by the addition of breakpoints and 

changes of slope, then the vector e will be the first column of the 

array [ p )  , i.e., 

For second-order plants the restriction of a(e) to the class of 

functions satisfying Eq. (2.1) involves no loss  in generality, as the 

most general PWL function in two dimensions is a function of a single 
variable, While it is impossible to state precisely what loss  in per- 

formance will be incurred for higher-order systems by this restriction, 

the simplification gained in realizing and analyzing the restricted class 

of PWL functions makes it a logical area for investigation before pro,- 
ceeding to more complicated types. 

So far, no mention has been made of the number of PWL components 

a is to have o r  the number of breakpoints the PWL oi are to contain, 

The emphasis in the work to follow will be upon finding switching func- 

tions with a minimal number of PWL elements and the PWL switching func- 
tion will be considered as a modification of a linear switching function. 

While no precise statements can be made regarding the minimal number of 

PWL elements to be used, it will be shown by the examples presented in 

later chapters that, at least in these instances, a significant improve- 

ment in performance can be made over that attainable with linear 
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swi tch ing  by in t roducing  only  one or  t w o  breakpoints .  A s i d e  from t h e  

r e s u l t a n t  s i m p l i c i t y ,  a PWL switching func t ion  wi th  a minimal number of 

e lements  i s  of  obvious use i n  an adapt ive system where t h e  switching 

func t ion  i s  to  be ad jus ted  dur ing  opera t ion .  

I n  o rde r  to  eva lua te  q u a n t i t a t i v e l y  a p a r t i c u l a r  switching func t ion  

i t  is  necessary to  de f ine  a scalar performance c r i t e r i o n ,  r e f e r r e d  t o  

as the  c o s t ,  whose value w i l l  depend upon the  switching func t ion  para- 

meters. The c o s t  (denoted by J) and t h e  r a r b i t r a r y  elements of (p)  
d e f i n e  a performance su r face  i n  a n  (r+l)-dimensional space and the  

d e s i r e d  switching func t ion  corresponds t o  t h a t  va lue  of 

J( { p )  ) t akes  on i t s  m i n i m u m  value (denoted by I ) .  The problem of 

des igning  the  PWL Switching Ztiiictioii ezi; the:: be cnnsidered as a prob- 

l e m  i n  searching  the  performance su r face  i n  order t o  f i n d  t h a t  va lue  of 

{p)  f o r  which 

B. SPECIFICATION OF THE PERFORMANCE SURFACE 

I 

where k i s  the  index corresponding t o  the  d i f f e r e n t  i n i t i a l  
cond i t ions ,  

K is  t h e  number of i n i t i a l  cond i t ions  used, 

w is the  weighting c o e f f i c i e n t  f o r  the  k i n i t i a l  
condi t ion  , 

t h  . . 
k 

0 
and T i s  the  s e t t l i n g  t i m e  from e and i s  dependent upon -k tife switching func t ion  parameters (p)  . 

0 When t h e  va lues  of w and $ are f ixed  by the  des igner  and the  sum- 

mation is c a r r i e d  o u t ,  t he  c o s t  J becomes a func t ion  only  of the 

switching func t ion  parameters ( p ]  . 

k 

The s imula t ion  r e s u l t s  presented i n  t h i s  i n v e s t i g a t i o n  were obta ined  

on a hybrid system composed of  an IBM. 1620 d i g i t a l  computer w i t h  20,000 
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decimal d i g i t s  of memory, a 48 a m p l i f i e r  E l e c t r o n i c  Assoc ia t e s  TR-48 

ana log  computer,and s i x  channels  each of  A-D and D-A conversion equip- 

ment. With c a r e f u l  programming i t  was p o s s i b l e  t o  run  approximately two 

t r a j e c t o r i e s  p e r  second, i nc lud ing  s e t t i n g  new i n i t i a l  c o n d i t i o n s  and 

switching func t ion  parameter va lues ,  sampling t h e  ana log  v o l t a g e s  t o  

determine when t h e  states had reached t h e  d e s i r e d  r eg ion  around t h e  

o r i g i n ,  and c a l c u l a t i n g  t h e  c o s t  according t o  Eq. (2 .2) .  

For computational purposes,  i t  i s  necessary  t o  cons ide r  t h e  d e f i n i -  

t i o n  of when a t r a j e c t o r y  has reached t h e  s t a t e - space  o r i g i n .  S ince  i t  

i s  n o t  f e a s i b l e  i n  an engineer ing  sense  t o  reduce t h e  states t o  pre- 

c i s e l y  zero,  and s i n c e  t h e  f i n a l  motion of t h e  t r a j e c t o r y  w i l l  involve  

c h a t t e r  i n  which t h e  s ta tes  decay exponen t i a l ly  and hence never pre- 

c i s e l y  reach t h e  o r i g i n ,  i t  i s  necessary  t o  e s t a b l i s h  some c o s t - f r e e  

r eg ion  (denoted by S) surrounding t h e  o r i g i n .  The r e s u l t i n g  performance 

s u r f a c e  w i l l  r ep resen t  t h e  t i m e  r equ i r ed  t o  b r i n g  t h e  s ta te  t o  t h e  r eg ion  

S and not t o  t h e  o r i g i n  as o r i g i n a l l y  planned. 

For second-order p l a n t s  where t h e  opt imal  swi tch ing  curve  f o r  t ra-  

j e c t o r i e s  going e x a c t l y  t o  t h e  o r i g i n  can be e a s i l y  ske tched ,  t h e  opt imal  

swi tch ing  curve f o r  t r a j e c t o r i e s  going t o  a r eg ion  S can be ob ta ined  

by applying t h e  t r a n s v e r s a l i t y  condi t ions*  t o  t h e  a d j o i n t  v e c t o r  a t  t h e  

f i n a l  time, i . e . ,  t h a t  t i m e  a t  which t h e  s ta te  reaches  S .  These cu rves  

are shown i n  F ig .  2 f o r  t h e  

shapes f o r  t h e  r eg ion  S having equal  areas. 

1/s2 p l a n t ,  u s ing  t h r e e  r e p r e s e n t a t i v e  

S ince  v i r t u a l l y  t h e  e n t i r e  theory of minimum-time c o n t r o l  s y s t e m s  

i s  f o r  t r a j e c t o r i e s  going t o  t h e  o r i g i n ,  i t  i s  d e s i r a b l e  t o  choose t h e  

shape and s ize  of S so t h a t  t h e  opt imal  swi tch ing  s u r f a c e  correspond- 

ing  t o  S w i l l  d i f f e r  as l i t t l e  as p o s s i b l e  from t h a t  f o r  t r a j e c t o r i e s  

going p r e c i s e l y  t o  t h e  o r i g i n .  With t h i s  i n  mind, t h e  para l le logram 

* 
See Sec. 6 of Pontryagin e t  a l .  [Ref .  11 f o r  an exp lana t ion  and 

d e r i v a t i o n .  Also see Hutchinson [Ref .  111 f o r  a number of examples, 
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shown i n  Fig.  2a has been used f o r  t h e  s imula t ion  of second-order p l a n t s .  

For n=3 t h e  r eg ion  S i s  a diamond and i t s  d e f i n i t i o n  is  r e a d i l y  

extendable t o  h igher  dimensions. 

This choice has  two o t h e r  f a c t o r s  which make i t  d e s i r a b l e .  F i r s t ,  

having l i nea r  boundaries,  i t  i s  e a s i l y  implemented. Second, i t  i s  e a s y  

t o  o b t a i n  a very  c l o s e  approximation t o  t h e  d i f f e r e n c e  i n  opt imal  t i m e s  

f o r  t r a j e c t o r i e s  going t o  t h e  o r i g i n  and t o  t h e  r eg ion  S ,  even f o r  

high-order p l a n t s .  Consider t h e  1/s2 p l a n t  f o r  which t h e  opt imal  

swi tch ing  curves  are shown i n  F ig .  2a .  A s  long as t h e  swi tch ing  p o i n t  

occu r s  ou t s ide  t h e  d i s c o n t i n u i t i e s  i n  t h e  op t ima l  swi tch ing  l i n e ,  t h e  

opt imal  t r a j e c t o r i e s  going t o  S w i l l  e n t e r  i t  a t  t h e  p o i n t s  e = + (0,A). 
Optimal t r a j e c t o r i e s  going d i r e c t l y  t o  t h e  o r i g i n  w i l l  t r a v e l  along t h e  

dashed l i n e s  i n  F ig .  2a which are segments of parabolas  and w i l l  p a s s  

- -  

2 
through t h e  p o i n t s  eT = - + (-A /2,A) which l i e  c l o s e  t o  t h e  s u r f a c e  of - 

2 
S.  S ince  le2[ = 1 f o r  t h e  l /s  p l a n t ,  t h e  t i m e  r equ i r ed  f o r  t h e  

s ta te  t o  go from e i t h e r  of t h e s e  p o i n t s  t o  t h e  o r i g i n  on an opt imal  t ra -  

j e c t o r y  i s  e x a c t l y  A seconds. Therefore ,  t h e  minimum t i m e  i n  which 

t h e  s t a t e  can reach  t h e  p o i n t s  e = - + (-A /2, A) i s  (To - A) where 

2 

T 2 
- 

T 2 i s  the  minimum t i m e  t o  t h e  o r i g i n .  S ince  t h e  p o i n t s  e = + (-A /2,A) - - TO 

d i f f e r  from t h e  p o i n t s  

t h e  optimal t i m e  t o  reach  S w i l l  be approximately (To - A) seconds. 

For a genera l  second-order p l a n t  t h e  above arguments hold when 

A << 1 because near  t h e  o r i g i n  t h e  trajectories are very c l o s e  t o  those  

of t h e  1/s2 p l a n t .  I n  a d d i t i o n ,  t h e  arguments can be gene ra l i zed  to  

inc lude  nth-order p l a n t s  by us ing  t h e  p l a n t  l/sn i n  p l a c e  o f  l /s  , 

Therefore ,  i n  t h e  s imula t ion  work t o  fo l low,  t h e  opt imal  times t o  reach 

S w i l l  be assumed t o  be given by 

eT = + ( 0 , A )  by t h e  d i s t a n c e  A /2,  when A << 1 - c 

2 

( T )  = ( T )  - A  
s k  O k  

(2.3) 

t h  
where (To) 

i n i t i a l  condi t ion .  

is t h e  optimal t i m e  t o  reach  t h e  o r i g i n  from t h e  k 
k 
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In  t h e  performance s u r f a c e s  t o  be i n v e s t i g a t e d  t h e  weight ing func t ion  

w w i l l  be  chosen so t h a t  any i n i t i a l  cond i t ion  w i l l  make an equal  con- 

t r i b u t i o n  to  t h e  aggrega te  cost J. Th i s  w i l l  be done by making 

w = 1/(Tslk . 
def ined  as 

k 

Therefore ,  i n  t h e  r e s u l t s  to  follow, t h e  cost w i l l  be k 

J( (p) 1 = 

and J = 1.0 w i l l  imply t h a  

1 ‘1 K T T k  
k=l  k 

(2.4) 

each of t he  K -rajectories -5  opt imal .  

C. PERM)RMANCE SURFACES FOR SECOND-ORDER PLANTS 

To i l l u s t r a t e  some of the rather geiieral a t a t a i e ~ t s  i:: the previor?.: 

s e c t i o n  regard ing  t h e  s p e c i f i c a t i o n  of t h e  performance c r i t e r i o n  and i t s  

e f f e c t  upon t h e  s u r f a c e  searching  process ,  t h e  l/s p l a n t  w i l l  be con- 

s ide red .  A swi tch ing  func t ion  having al(el) PWL w i t h  one breakpoin t ,  

w i l l  be used. Thus r=3 and t h e  PWL swi tch ing  func t ion  parameter array 

can  be w r i t t e n  as 

2 

where t h e  x’s denote  undefined elements.  The performance s u r f a c e  can 

be dep ic t ed  i n  t h e  four-dimensional space (r+l = 4 )  by  p l o t t i n g  con- 

P l  1 t o u r  l i n e s  of cons tan t  J i n  t h e  p lane  p12 = cons tan t .  Since 

and p13 are t h e  s lopes  of ol before  and a f t e r  t h e  breakpoin t ,  i t  is  

apparent  t h a t  t h e  l i n e  

func t ion .  The block-diagram of  the system is  shown i n  t h e  s k e t c h  below. 
pll = p13 corresponds to  a l i n e a r  swi tch ing  

Because t h e  form of (p) has been f i x e d ,  t h e  cost J( ( p ) )  as given 

by Eq. (2.4) w i l l  be  completely spec i f i ed  by t h e  cho ice  o f  the i n i t i a l  

c o n d i t i o n s  t o  be used, namely the  K va lues  f o r  
0 The cho ice  of  %* 
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T 
I 1 

1 e 

t h e s e  i n i t i a l  cond i t ions  determines t h e  shape of t h e  performance sur -  

f a c e  which must be searched i f  t h e  b e s t  PWL swi tch ing  f u n c t i o n  i n  t h e  

class represented  by Eq. (2.5) i s  t o  be found. The c o s t - f r e e  reg ion  

S w i l l  be a s  shown i n  F ig .  2a ,  w i t h  A = 0.20 ,  

For t h i s  p a r t i c u l a r  p l a n t  i t  i s  p o s s i b l e  t o  l i m i t  t h e  i n i t i a l  con- 

d i t i o n s  t o  p o i n t s  along t h e  p o s i t i v e  e a x i s  w i t h  no l o s s  i n  gener- 

a l i t y  because any s t a b l e  t r a j e c t o r y  must in te rsec t  t h e  e a x i s ,  

a l though t h i s  i s  not  t rue f o r  n > 2 and for some o t h e r  second-order 

p l a n t s .  Therefore,  for t h e  sake of argument, c o n s i d e r a t i o n  w i l l  be 

l i m i t e d  t o  i n i t i a l  cond i t ions  a long  t h e  e a x i s  i n  t h e  range 

0 < el 1. 8. 

by measuring J a t  increments of 0.025 i n  p1 are shown i n  F ig .  3 .  

1 

1 

1 
Cross-sections of t h r e e  t y p i c a l  s u r f a c e s  which were ob ta ined  

0 

I t  i s  found t h a t  t h e  s u r f a c e  becomes smoother as t h e  number of 

i n i t i a l  condi t ions  i s  inc reased .  The smoothing e f f e c t  of u s ing  more 

i n i t i a l  cond i t ions  i n  the  d e f i n i t i o n  of t h e  c o s t  i s  expla ined  by no t ing  

t h a t  t h e  va lue  of J is  t h e  average of t h e  c o s t  measured f o r  each  of 
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t h e  i n i t i a l  cond i t ions  used. When { p ]  i s  such t h a t  t h e  t r a j e c t o r y  

from one of  t h e  i n i t i a l  cond i t ions  is  opt imal ,  t h a t  p a r t i c u l a r  component 

o f  J w i l l  be a t  a minimum. Therefore,  t h e r e  w i l l  be a tendency f o r  

J t o  have f l u c t u a t i o n s  i n  i t s  gradien t  and poss ib ly  minima a t  those  

p l a c e s  i n  t h e  parameter space where one or  more of  i t s  components a t t a i n  

t h e i r  m i n i m a .  C l e a r l y ,  t h e  number of p l aces  i n  t h e  { p )  space where 

t h i s  w i l l  occur  w i l l  i nc rease  a s  K ,  t h e  number of i n i t i a l  cond i t ions  

used i n  measuring J, i s  increased.  However, s i n c e  J is  averaged over  

t h e  K i n i t i a l  cond i t ions ,  the ne t  e f f e c t  of any s i n g l e  component upon 

J w i l l  be  reduced as K is  increased.  

Although examination of Fig.  3 i n d i c a t e s  t h a t  t h e  opt imal  l i n e a r  

swi tch ing  parameter depends upon the number of  i n i t i a l  cond i t ions  used 

t o  d e f i n e  J ,  it w a s  found t h a t  the opt imal  PWL switching parameters  

a i d  riot vary as K ::ZE chrrnged from 2 t o  8. This  i n d i c a t e s  t h a t  

and 8 are r e p r e s e n t a t i v e  of t he  e n t i r e  range 

only  b e n e f i t  ob ta ined  by us ing  more than  t h e s e  two i n i t i a l  cond i t ions  

is  i n  smoothing t h e  performance sur face .  

O = 1  
el 

0 1 < el < 8 and t h a t  t h e  - - 

For the  curves  of Fig.  3 t h e  e f f e c t  o f  t h e  number of  i n i t i a l  con- 

d i t i o n s  used i n  determining J has been considered by keeping t h e  

breakpoint  of  rsl f i x e d  a t  

v e s t i g a t e  t h e  e f f e c t  of t h e  breakpoint upon t h e  performance su r face .  

The shape of t h e  performance sur face  obta ined  wi th  K = 8 i s  ind ica t ed  

by t h e  contours  of J i n  t h e  pll, p13 p lane  f o r  t h r e e  va lues  of 

presented  i n  Fig.  4 .  The p o i n t  of major i n t e r e s t  i s  t h a t  a cost of 

J < 1.10 can  be found on each of t h e  t h r e e  p l o t s ,  a l though t h e  va lues  

= 0.20. I t  i s  a l s o  of  i n t e r e s t  to  in-  
p12 

p12 

and p13 corresponding t o  t h e s e  optimum values  d i f f e r  con- 
Of p11 
s i d e r a b l y .  Therefore ,  t he  three-dimensional parameter space ( p )  con- 

t a i n s  a reg ion  wi th in  which J <1.10 and t h i s  reg ion  extends a t  least  

p12 = 1.00. Since J > 1.00 

by d e f i n i t i o n  and I < 1.08 f o r  each of t h e  t h r e e  p lanes  shown, i t  i s  

apparent  t h a t  no s u b s t a n t i a l  reduct ion  i n  c o s t  can be obta ined  by vary- 

i ng  t h e  breakpoint  

and t h e  s l o p e s  pll and p13 have been set t o  t h e  opt imal  va lues  cor- 

responding t o  t h a t  value of p used. However, from an engineer ing  

from t h e  p lane  p12 = 0.20 t o  t h e  p lane  - 

- 

p12 as long as i t  l ies  w i t h i n  t h e  range 0.20 5 p12 5 1.0 

1 2  
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p o i n t  of view, t h e  PWL swi tch ing  f u n c t i o n s  w i t h  p12 = 0.20 or 0.50 

are p re fe rab le  because the  minima are broader than when p12 = 1.00. 

In  t h e  sketch below the  three PWL swi tch ing  l i n e s  are compared w i t h  the  

optimal switching l i n e  which i s  composed of two p o r t i o n s  of parabolas .  

op t imal  

J swi tch ing  
l i n e  

el 
I I c 

-4 -2 4 

opt imal  PWL 
swi tch ing  l i n e s  
of F i g .  4 

T 

In  t h i s  s e c t i o n  i t  has been shown t h a t  t h e  des ign  of PWL swi tch ing  

func t ions  can be  t r e a t e d  as a problem i n  sea rch ing  a performance su r -  

f a c e  whose shape w i l l  depend upon t h e  cho ice  of i n i t i a l  c o n d i t i o n s  used 

i n  i t s  d e f i n i t i o n .  While i t  i s  not  p r a c t i c a l  t o  g ive  r igo rous  c o n d i t i o n s  

which are s u f f i c i e n t  t o  ensure  t h a t  the  performance s u r f a c e  can be 

searched, i t  has been p o s s i b l e ,  by cons ide r ing  second-order examples, 

t o  formulate t h e  fo l lowing  two r u l e s  which would appear t o  be necessary  

f o r  t h e  ex i s t ence  of a performance s u r f a c e  which can be searched by one 

of t h e  standard s u r f a c e  searching  techniques .  The s u f f i c i e n c y  of these 

r u l e s  i s  demonstrated i n  s p e c i f i c  cases by performing t h e  s u r f a c e  sea rch  

i n  o r d e r  to  des ign  l i n e a r  and PWL swi tch ing  s u r f a c e s  f o r  s e v e r a l  p l a n t s  

of second-, th i rd- ,and  four th-order .  
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First, a sufficient number of initial conditions should be used so 

that the size of any local minima and the fluctuations in surface gra- 

dient are small enough to be tolerated by the particular searching 

procedure being used. Second, it is necessary that the initial con- 

ditions used in defining J be representative of all of the initial 

states to which the system might be subjected. 
- 

D. SURFACE SEARCHING TECHNIQUES 

The task of searching surfaces of the type and dimensionality en- 

countered in designing PWL switching functions by the methods proposed 
here is far from trivial and is an area of current investigation. 

Factors which tend to complicate the procedure are the possible pres- 

ence of relative minima, a complicated functional dependence between 

J and the PWL switching parameters { p )  , and a high dimensionality 
of the parameter space. A detailed investigation of surface searching 

techniques has not been undertaken. Instead, two relatively unsophis- 

ticated techniques were used to illustrate the feasibility of the 

search process for representative second-through fourth-order plants 

with PWL switching. For a detailed discussion of the application of 

gradient and relaxation procedures to the searching of multiparameter 

surfaces in the presence of noise, the reader is referred to the work 

of Kushner [Ref. 121 . Brown [Ref. 131 also gives an excellent dis- 

cussion of the various gradient procedures for searching surfaces in 

the absence of noise. 

The first of the two search techniques used is a modification of 

the method of steepest descents. In the method of steepest descents 

the iterative process for adjusting an r component parameter vector 

- R is [Ref. 131 

Rm+l 

m where - Rm 
value of a positive coefficient during the mth iteration, and 

is the parameter vector before the mth iteration, 7 is the 
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a J / a R  - = (aJ/aR,, . . . ,dJ/aRr). Equation (2.6) can be cons idered  as 

r ep resen t ing  a d i s c r e t e  feedback p rocess  where the  c o e f f i c i e n t  7 i s  

the  g a i n  i n  the feedback loop. I f  t h i s  ga in  i s  t o o  low, t he  convergence 

of - R t o  i t s  optimum value  w i l l  be slow, and i f  7 i s  too  h igh  the  

feedback process w i l l  be uns t ab le .  Because o f  t h e  r e l a t i v e l y  complicated 

shape of t h e  s u r f a c e s  t o  be searched ,  i t  proved t o  be b e n e f i c i a l  t o  make 

7 dependent upon the  r e s u l t s  of t h e  p rocess ,  i . e . ,  t o  make i t  be an 

adap t ive  parameter. The de t a i l s  of t h e  g r a d i e n t  procedure used i n  t h i s  

i n v e s t i g a t i o n  a r e  presented  i n  Appendix B. 

The g rad ien t  search procedure worked w e l l  when the  parameter space  

w a s  l i m i t e d  t o  two dimensions, such as t h e  s u r f a c e  dep ic t ed  i n  F ig .  4a 

and i n  designing a l i n e a r  swi tch ing  f u n c t i o n  f o r  a t h i r d - o r d e r  p l a n t  

(see Chapter IV). For t h e  performance s u r f a c e  shown i n  F ig .  4a t h e  

sea rch  procedure t y p i c a l l y  reduced t h e  c o s t  from 2.0 t o  below 1 .10  i n  

f i v e  i t e r a t i o n s .  However, when the  same procedure was used t o  search 

three parameters s imul taneous ly ,  i t s  convergence w a s  g e n e r a l l y  q u i t e  

slow. Due t o  the  geometr ica l  d i f f i c u l t i e s  of ana lyz ing  a three-parameter 

search and the  f a c t  t h a t  the  memory of t h e  a v a i l a b l e  d i g i t a l  computer 

wa.s v i r t u a l l y  s a t u r a t e d ,  t h e  g r a d i e n t  p rocess  w a s  n o t  pursued f u r t h e r .  

However, i t  was f e l t  t h a t  t h e  simple l o g i c  which was s u c c e s s f u l  f o r  two 

parameters w a s  no t  s o p h i s t i c a t e d  enough f o r  vary ing  three parameters 

simultaneously.  If  more computer memory were a v a i l a b l e ,  t h e  methods 

proposed by Kushner [ R e f .  121 would appear t o  be worth c o n s i d e r a t i o n .  

When the d imens iona l i ty  of the parameter space i s  l a r g e ,  an a l t e r n a -  

t i v e  t o  using the  g r a d i e n t  procedure i s  a random p e r t u r b a t i o n  search 

procedure,  Because t h e  random sea rch  procedure invo lves  p e r t u r b a t i o n s  

about a nominal p o i n t  which are s m a l l  compared t o  t h e  dimensions of t h e  

parameter space ,  i t  i s  d i s t i n c t  from a Monte Car lo  approach i n  which 

p o i n t s  throughout t h e  parameter space are chosen randomly, i n  t h e  hope 

t h a t  one w i l l  be chosen a t  or near  t h e  optimum v a l u e  of The random 

search i s  p a r t i c u l a r l y  a t t r a c t i v e  f o r  two reasons .  F i r s t ,  t h e  l o g i c  of 

t h e  procedure is  extremely s imple  and r e q u i r e s  very  l i t t l e  computer 

memory. And second, if - Rm i s  caught i n  a r e l a t i v e  minimum of J ,  

t h e r e  i s  t h e  p o s s i b i l i t y  t h a t  t h e  random p e r t u r b a t i o n  of t h e  parameter 

5. 
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Rm+ 1 
- v e c t o r  w i l l  be l a r g e  enough to move 

rounding t h e  r e l a t i v e  minimum so t h a t  i t  can reach t h e  abso lu te  minimum. 

ou t  of  t h e  depression sur-  

The pe r tu rba t ions  of the parameter vec to r  are obta ined  by adding to  

a vec to r  Rm 

approximately-Gaussian random v a r i a b l e  wi th  zero mean and a s tandard  

dev ia t ion  of V d 2  . The approxirnate1y-Gaussia.n numbers are obta ined  

by adding six random numbers uniformly d i s t r i b u t e d  between -0.5 and 

0.5 and mul t ip ly ing  their sum by the  p o s i t i v e  scale f a c t o r  V t o  y i e l d  

the  des i r ed  s tandard  dev ia t ion  [Ref. 14) . 

&m , each of w h o s e  components is an uncor re l a t ed ,  
-1 - 

The search  l o g i c  c o n s i s t s  s imply  of measuring the  cost corresponding 

t o  t h e  per turbed parameter vec to r  and comparing i t  t o  t h e  lowest va lue  
Rm+l is  found by the  preceding i t e r a t i o n s .  A new nominal vec to r  - 

chosen according t o  

Rm+ 1 = Rm + &m 
-1 - - 

i f  

o therwise  a new random pe r tu rba t ion  &m i s  chosen. I f  a va lue  f o r  
Rm+ 1 - i s  not  found by t h e  t i m e  i reaches  t h e  p r e s e t  l i m i t ,  N, i t  is  

assumed t h a t  Rm i s  near  a minimum and t h e  s tandard  dev ia t ion  V d 2  

should be reduced. For example, i n  t he  method used, a f t e r  i reaches 

32, V i s  halved and the  process  repea ted ,  s t a r t i n g  aga in  wi th  i = 1. 

I f  V is  halved seve ra l  t i m e s  without f i n d i n g . a  value of J lower 

than J ( R  ) or  reaches some p rese t  l e v e l ,  i t  i s  assumed t h a t  a mini- 

mum has been found. As wi th  t h e  choice of 7 f o r  t h e  g rad ien t  search, 

the i n i t i a l  va lue  of V is not  c r i t i c a l ,  due to i t s  adapt ive  n a t u r e ,  

provided t h a t  i t  i s  not  chosen too low. 

-1+1 

- 

m 
- 
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111. QUALITATIVE DESIGN PROCEDURES FOR LINEAR 
AND PWL SWITCHING FUNCTIONS 

A .  GENERAL 

When the  p l a n t  i s  of th i rd -o r  h igher -order ,  t h e  number of swi tch ing  

func t ion  parameters can l e a d  t o  a performance s u r f a c e  of such a h igh  

d imens iona l i ty  t h a t  i t  can be an  extremely d i f f i c u l t  t a s k  t o  sea rch  f o r  

t h e  optimum. I n  o r d e r  t o  minimize t h e  d imens iona l i ty  of t h e  perform- 

ance su r face  i t  i s  v e r y  d e s i r a b l e  t o  know which of t h e  l i n e a r  swi tch ing  

func t ion  parameters have t h e  smallest i n f l u e n c e  upon s y s t e m  perform- 

ance so t h a t  they may be omi t ted  as PWL func t ions .  Another d i f f i c u l t y  

occur s  when the  p l a n t  has p o l e s  which are n o t  w e l l  damped, which rep- 

r e s e n t s  a l a r g e  p o r t i o n  of t h e  i n t e r e s t i n g  c o n t r o l  s y s t e m  problems. I n  

t h i s  ca se  t h e  response f o r  va lues  of (p) i n  a l l  bu t  a r e l a t i v e l y  small 

p o r t i o n  of t h e  r-dimensional parameter space may l e a d  t o  u n s t a b l e  

t r a j e c t o r i e s .  S ince  t h e  performance s u r f a c e  does no t  e x i s t  i n  t h e s e  

r eg ions  any sea rch  technique dependent upon t h e  s u r f a c e  g r a d i e n t  cannot 

be appl ied  t h e r e .  Therefore ,  a t t e n t i o n  w i l l  be given t o  methods o f  

o b t a i n i n g  some i d e a  as t o  where t h e  performance s u r f a c e  e x i s t s  and t o  

a means of e s t a b l i s h i n g  those  parameters t o  which t h e  c o s t  is  most s ens i -  

t i v e .  A s  an i l l u s t r a t i o n  of t he  procedures developed, second-order 

examples w i l l  be  worked before  proceeding t o  t h e  more complicated t h i r d -  

and fourth-order p l a n t s  f o r  which t h e  methods are in tended .  A t  t h a t  

t i m e  s eve ra l  problems p e c u l i a r  t o  p l a n t s  of o r d e r  g r e a t e r  t han  two w i l l  

be d iscussed .  

* 

B.  DESIGN OF LINEAR SWITCHING FUNCTIONS 

The method of des igning  an optimalwPWL swi tch ing  f u n c t i o n  w i l l  be 

t o  s t a r t  t h e  sea rch  procedure w i t h  a l i n e a r  swi tch ing  f u n c t i o n  which 

~ * 
Unstable w i l l  be used t o  imply t h a t  t h e  s t a t e - space  o r i g i n  i s  n o t  

asymptot ica l ly  s t a b l e .  

** 
An optimal PWL swi tch ing  func t ion  i s  t h e  opt imal  func t ion  f o r  t h e  

PWL components ai and number of b reakpo in t s  corresponding t o  ( p )  . 
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works reasonably well for all of the K initial conditions and then to 

modify it by making one or more of its components FWL. However, there 

is no general procedure for the synthesis of linear switching functions 

such as there are for strictly linear systems. 

As was mentioned in Section I-B, FlGgge-Lotz and her co-workers 

[Refs. 7 ,  91 have synthesized linear switching functions for particular 

third-order plants and particular types of initial conditions by choosing 

the linear switching coefficients pi 
those coefficients which reduced the state to the origin in (n-1) 

switchings as one component of the initial state was varied over the 

range of interest. While this approach can give good results in spe- 

cific instances it has several drawbacks which limit its applicability. 

First, for plants with oscillatory roots there are large regions of 

stable response from which the origin cannot be reached in (n-1) 

switchings. Second, the value of e corresponding to a particular 

initial condition must be determined, presumably by computation of 

trajectories or computer simulation. Third, the effect of using a 

to be a good approximation to 

linear switching function designed on the basis of initial states along 

the 

trajectories when the plant is of third-or higher-order. Finally, the 

manner in which the variable coefficients obtained by considering dif- 

ferent initial states are to be approximated by the constants and 

the consequences of this approximation are not apparent without further 

simulation of the system. 

el axis for slightly different initial states can result in unstable 

1 
pi 

Schmidt [Ref. 31 has used the root-locus method to study saturating 

linear systems of third-and higher-order by treating the limiter as an 

equivalent gain which decreases after it reaches saturation. This 

interpretation yields an equivalent set of closed-loop poles which coin- 

cide with the closed-loop poles of the unsaturated linear system when 

the limiter is not in saturation and travel along the root loci toward 

the open-loop plant poles as the limiter goes further into saturation. 

He has shown by simulation studies that the root loci can be a useful 

tool for analyzing the response of this type of system in a qualitative 

manner. Following this approach will allow a qualitative interpretation 
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of t h e  switching p lane  i n  terms of t h e  r o o t  l o c i  and permit one t o  

o b t a i n  use fu l  in format ion  regard ing  both  l i n e a r  and PWL swi tch ing  

func t ions .  

Kalman [Ref.  151 has i n v e s t i g a t e d  t h e  s t a b i l i t y  of q u i t e  a r b i t r a r y  

non l inea r  s y s t e m s  by apply ing  t h e  root - locus  techniques  t o  t h e  inc re -  

mental d i f f e r e n t i a l  equat ion .  However, when t h e  n o n l i n e a r i t y  i s  a con- 

t a c t o r  the only  two incremental  equ iva len t  g a i n s  are ze ro  and i n f i n i t y .  

For t h i s  reason, i t  appears  t o  be more reasonable  t o  choose t h e  equiva- 

l e n t  ga in  so t h a t  i t s  ou tpu t  co inc ides  w i t h  t h a t  of t h e  c o n t a c t o r  f o r  

t h e  same value of 0. Since  u = -sgn 0 and sgn rs = - a/Iol,  t h e  

d e s i r e d  equiva len t  ga in  i s  K ( a )  = - l / I r s l  . For t h e  sake of comparison, 

t h e  desc r ib ing  func t ion  f o r  t h e  c o n t a c t o r  i s  

m a t e l y  the same as - l / ]o l  . Since  no q u a n t i t a t i v e  r e s u l t s  are t o  be 

ob ta ined  by u s ing  t h i s  equ iva len t  l i n e a r i z a t i o n  t h e  s m a l l  d i f f e r e n c e  

between t h e  two i s  inconsequent ia l .  

-4/fi101 which i s  approxi- 

The l i n e a r  swi tch ing  f u n c t i o n  can be  expressed as 

+ p2e2 + . . . + pnen . 

Since  t h e  swi tch ing  func t ion  i s  followed by t h e  c o n t a c t o r ,  one of t h e  

pi may have any p o s i t i v e  va lue  wi thout  a f f e c t i n g  u ( t ) ,  so pn w i l l  

be set equal t o  u n i t y  i n  t h e  work t o  fo l low.  I f  t h e  v e c t o r  - e i s  com- 

posed of the error v a r i a b l e  and i t s  f i r s t  (n-1) d e r i v a t i v e s ,  as i s  

o f t e n  t h e  c a s e ,  then 

de  + ... + p2 dt + ple . d '-'e 

d tn - l  
de) = - (3.2) 

Taking the Laplace transform of Eq. ( . 3 . 2 )  y i e l d s  t h e  t r a n s f e r  func t ion  

(3.3) 
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and t h e  t o t a l  system can be represented by t h e  block-diagram shown i n  

F ig .  5a. The fact t h a t  t he  t r a n s f e r  func t ion  (3.3) obviously cannot 

1 

s + ... + a. n - A L  K(o) - n-1 
- s  +...pl 

e ( t )  

1 I 

U - K ( 0 )  

a. e(t)  as Output Var iab le  

1 

$t> n-1 

n 
s + ... +p1 
s + ... + a- 

~ .- 1 
~~ 

b. a( t )  as Output Var iab le  

FIG.  5 .  BJBCK-DIAGRAMS OF THE LINEARIZED SYSTEM 

rep resen t  a phys ica l  system, s ince  i t  has  no poles, i s  of  no concern 

because i t  has  been assumed t h a t  the  (n-1) d e r i v a t i v e s  of e have 

been generated by the  p l a n t  and the swi tch ing  func t ion  r e p r e s e n t s  on ly  

t h e i r  l i n e a r  combination. 

The zeros of the  t r a n s f e r  func t ion  can be found by f a c t o r i n g  t h e  

right-hand s i d e  of Eq. (3.3) i n t o  the form 

- n-1 
+ ... + P1 - S 

i=l 
(3.4) 

(n-1) /2 

n odd 2 2 
(s t 2c.w.s  + w. 1 

1 1  1 
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are t h e  n a t u r a l  f r equenc ie s  and damping r a t i o s ,  T i  where the  w and 
i 

r e s p e c t i v e l y ,  of each p a i r  of z e r o s  and, if n i s  even, a d e s c r i b e s  

a s i n g l e  real z e r o .  

When n > 3 i n  Eq. (3.3) or when t h e  system is  composed of two or 

more coupled p l a n t s ,  i t  w i l l  be more convenient t o  use t h e  parameter 

v e c t o r  which l o c a t e s  t h e  z e r o s  of  t h e  t r a n s f e r  f u n c t i o n  from t h e  

c o n t r o l  u t o  t h e  switching f u n c t i o n  B, r a t h e r  than e, t h e  l i n e a r  

switching func t ion  c o e f f i c i e n t s .  The (n-1) components of are 

def ined  as  

& 

j = 1 , 3 ,  ..., n-2 

j = 2,4, ..., n-1 

j = n-1 i f  n even. 

(3.5) 

I f  the  b locks  denot ing  t h e  swi tch ing  f u n c t i o n  and p l a n t  i n  F ig .  5a 

are combined, so t h a t  t h e  e r r o r  i s  no longe r  cons idered  a v a r i a b l e ,  t h e  

pseudo-system of F ig .  5b i s  o b t a i n e d ,  having (n-1) z e r o s ,  n p o l e s ,  

and t h e  v a r i a b l e  ga in  

scalar func t ion  a ( t ) ,  can be analyzed i n  a q u a l i t a t i v e  manner by con- 

s i d e r i n g  the  root l o c i .  The e n t i r e  range of t h e  equ iva len t  ga in  K(0) 

from zero  t o  i n f i n i t y  i s  of i n t e r e s t .  

K ( 0 )  = -1/lal. T h i s  s y s t e m ,  whose ou tpu t  i s  t h e  

S ince  B i s  t h e  l i n e a r  combination of t h e  n components of e 

given by Eq. ( 3 . 1 ) )  e = 0 impl ies  t h a t  B = 0 but t h e  converse i s  n o t  

t r u e .  This be ing  t h e  case, t h e r e  are two c o n d i t i o n s  which are necessary  

i n  o r d e r  f o r  t h e  s ta te -space  o r i g i n  t o  be  a sympto t i ca l ly  s t a b l e .  F i r s t ,  

t h e  average va lues  of 0 and 0 ,  t h e  o u t p u t  of t h e  swi tch ing  f u n c t i o n  

and i t s  d e r i v a t i v e ,  must both be reduced t o  ze ro .  Second, t h e  c h a t t e r  

motion when o =  0 must be such t h a t  e approaches ze ro .  

- 

- 
I t  i s  w e l l  known t h a t  t h e  behavior o f  e ( t )  du r ing  c h a t t e r  can be 

e a s i l y  determined f o r  sys t ems  of any o r d e r  by s e t t i n g  ci i n  Eq. (3.2) 

equal to  zero ,  y i e l d i n g  t h e  fo l lowing  

e n t i a l  equation f o r  e: 

(n-l)st-order homogenous d i f f e r -  

-26- 



Examination of this differential equation indicates that the average 

motion in chatter is precisely that of a linear system having closed- 

loop poles at the zeros corresponding to the switching function. For 

the chatter motion of e to be asymptotically stable the switching 

function zeros must be located in the left half of the s-plane (here- 

after abbreviated LHP), implying that the coefficients of s in Eq. 

(3.4) must satisfy the Routh-Hurwitz criterion. 

- 

The first condition, namely, that r~ and 6 be reduced to zero, 
falls in the realm of the celebrated Aizerman's conjecture which deals 

with the stability of systems of the type shown in Fig. 5b. As des- 

cribed by Hahn [Ref. 161 , the conjecture states that if a single non- 
linearity f(o) 

is asymptotically stable for all values of the gain between the limits 

K' ana K", then the nonlinear system is asymptotically-stable-in-the- 

large for any continuous single-valued nonlinearity satisfying the con- 

dition 

is replaced by a linear gain and the linearized system 

Hahn states that the conjecture has been proven valid for all second- 

order plants but invalid for certain third-order plants having two 

zeros in their transfer functions. 

The version of Aizerman's conjecture restricted to a contactor non- 

linearity will be used to establish design criteria on the root loci 

and those regions of the s-plane in which they may lie. If the root 

loci remain entirely in the LHP for all 0 < K ( 0 )  < m it will be 

anticipated that the nonlinear system is asymptotically-stable-in-the- 

large. If the loci enter the RHP as the equivalent contactor gain de- 
creases and remain there for all lower values of gain, it will be 

anticipated that the nonlinear system will yield unstable responses for 

some initial conditions in the state-space. Should the loci correspond 

to those of a conditionally stable system it will be anticipated that 

the system has a finite region of stability, although Kalman [Ref. 151 

states that if the loci enter the RHP only slighly and then leave, 
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t h e r e  may be no a c t u a l  u n s t a b l e  reg ion  i n  t h e  s ta te -space .  Genera l ly  

speaking, t h e  c r i t e r i o n  i s  followed t h a t  t h e  equ iva len t  p o l e s ,  which 

are  func t ions  of 0 ,  should remain as f a r  t o  t h e  l e f t  i n  t h e  s-plane 

as poss ib l e .  

Th i s  general  r u l e  can be made more s p e c i f i c  when t h e  p l a n t  has  

r o o t s  near t h e  imaginary a x i s .  I n  t h a t  case,  a func t ion  which has con- 

s i d e r a b l e  u t i l i t y  i s  t h e  ang le  w i t h  which t h e  locus  d e p a r t s  from an 

o s c i l l a t o r y  p o l e .  Th i s  a n g l e ,  denoted by @, i s  measured from a l i n e  

p a r a l l e l  to t h e  r e a l  a x i s  of t h e  s-plane and pass ing  through t h e  o s c i l -  

l a t o r y  pole having p o s i t i v e  imaginary p a r t ,  a s  i n d i c a t e d  i n  F ig .  6 .  I f  

t1 

I I -1 -a 

-1 

u 

- 0  

ix-? 
1/2 I 

v = (1 - c2> 

1- -5 &[SI  

5 = -0.2 
v = 0.98 

2 FIG. 6. TYPICAL ROOT-LOCUS PLOT FOR THE l / ( s  - 0.4s + 1) PLANT 
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t h e  osci l la tory poles i n  ques t ion  l i e  exac t ly  on the  imaginary a x i s  

t hen ,  unless t h e  switching funct ion parameters p l ace  @ i n  t he  range 

90° < I @  I < 270° 

in- the- large s i n c e  the  l o c i  en te r  t h e  RHP. 
t h e  l i n e a r i z e d  system cannot be asymptot ical ly-s table-  

I t  should be emphasized t h a t  Aizerman's con jec tu re  w i l l  be used 

only  i n  a q u a l i t a t i v e  sense to obta in  parameter va lues  f o r  i n i t i a l i z i n g  

a s u r f a c e  searching  procedure. Therefore,  any conclusions regarding 

t h e  s t a b i l i t y  of a nonl inear  system obta ined  by applying t h e  con jec tu re  

would be v e r i f i e d  a t  the  s tar t  of the  search procedure because the  

measurement of the performance sur face  r e q u i r e s  t h e  computation of t he  

s y s t e m  t r a j e c t o r i e s .  

In  a d d i t i o n  t o  the  design cri teria der ived  from t h e  root locus ,  i t  

is  p o s s i b l e  to  o b t a i n  one more c r i t e r i o n  by cons ider ing  the t r a j e c t o r i e s  

i n  t h e  n-dimensional s ta te -space .  I t  has been ohserved &ring a lai=ge 

number of analog computer runs with a v a r i e t y  of third-  and fourth-order  

p l a n t s  and l i n e a r  switching func t ions  t h a t  the s t a b i l i t y  of a nonl inear  

s y s t e m  i s  cha rac t e r i zed  by the  ex is tence  or  absence of a unique symmetric 

p e r i o d i c  s o l u t i o n  having t w o  cont ro l  r e v e r s a l s  each period.* 

p l a n t  po le s  l i e  i n  the LHP t he  per iodic  s o l u t i o n ,  henceforth r e f e r r e d  

t o  as the  dominant pe r iod ic  so lu t ion ,  i s  s t a b l e  and i t  experimental ly  

i s  observed t h a t  l a r g e  i n i t i a l  s t a t e s  w i l l  converge to  i t  and never 

reach  the o r i g i n .  When a l l  of t he  p l a n t  poles are not  i n  the  LHP i t  is  

observed t h a t  the  dominant per iodic  s o l u t i o n  is  uns t ab le  and i n i t i a l  

s t a t e s  l y i n g  o u t s i d e  the  s t a b i l i t y  boundary i n  the n-dimensional state- 

space w i l l  approach t h e  dominant per iodic  s o l u t i o n  before  growing with- 

o u t  bound. I n  e i t h e r  case, i t  has been observed t h a t  t h e  absence of the  

dominant pe r iod ic  s o l u t i o n  impl ies  t h a t  t h e  system w i l l  be s t a b l e  f o r  

any i n i t i a l  cond i t ions  which can be s imulated on t h e  analog computer. 

I f  t he  

* 
Other  symmetric pe r iod ic  so lu t ions  involving more than t w o  rever-  . 

sals may poss ib ly  e x i s t ,  but  on ly  those having t w o  r e v e r s a l s  w i l l  be 
considered here .  These s o l u t i o n s  a re  t h e  only  pe r iod ic  motions con- 
s i s t e n t l y  observed i n  a l l  classes of sys t ems  being s imula ted .  When 
n=2 t h e  dominant pe r iod ic  so lu t ion  i s  the  l i m i t  c y c l e  having two con- 
t r o l  r e v e r s a l s  per  per iod.  
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I f  t h e  t r a j e c t o r i e s  of t h e  p l a n t  are examined i n  a canonica l  space 

where t h e  p ro jec t ions  of t h e  t r a j e c t o r i e s  have a r e l a t i v e l y  simple geo- 

m e t r y ,  t h e  dominant p e r i o d i c  s o l u t i o n  can  g e n e r a l l y  be deduced by u s i n g  

t h e  cond i t ions  of symmetry and p e r i o d i c i t y  i n  o r d e r  t o  o b t a i n  a locus  

of poss ib l e  swi tch ing  p o i n t s  i n  t h e  s t a t e - space .  S ince  t h e  swi tch ing  

p o i n t s  must l i e  on t h e  swi tch ing  p lane  t h e  p e r i o d i c  s o l u t i o n  can  occur  

only  when the  locus  of p o s s i b l e  swi tch ing  p o i n t s  i n t e r s e c t s  t h e  switch- 

i n g  p l a n e ,  For t h i s  reason  i t  i s  p o s s i b l e  t o  expres s  some measure of 

t h e  s i z e  of t h e  p e r i o d i c  s o l u t i o n ,  such as t h e  amplitude o f  a s t a t e  

v a r i a b l e ,  i n  terms of t h e  swi tch ing  f u n c t i o n  parameters.  

The pe r iod ic  s o l u t i o n s  ob ta ined  i n  t h i s  manner are i d e n t i c a l  t o  

those obtained by c o n s t r u c t i o n  of t h e  H a m e l  or Tsypkin* l o c i .  

t h e  H a m e l  and Tsypkin l o c i  can be app l i ed  i n  a s t r a i g h t f o r w a r d  manner 

t o  s y s t e m s  having n o n l i n e a r i t i e s  cons ide rab ly  more gene ra l  than a per- 

f e c t  c o n t a c t o r ,  they are no t  i n  a convenient form f o r  use  wi th  switch- 

i n g  su r faces  having more than two dimensions. 

While 

To summarize, t h e  c r i te r ia  for t h e  q u a l i t a t i v e  des ign  of a l i n e a r  

switching func t ion  are: 

1. Keep t h e  swi tch ing  func t ion  z e r o s  as f a r  t o  t h e  l e f t  i n  t h e  
s-plane as p o s s i b l e  by minimizing t h e i r  maximum real  p a r t .  

2. Keep t h e  equ iva len t  p o l e s  of t h e  l i n e a r i z e d  s y s t e m  as f a r  t o  
t h e  l e f t  i n  t h e  s-plane as p o s s i b l e  by opt imiz ing  a s u i t a b l e  
measure such as t h e  angle  of d e p a r t u r e  or cross-over ga in  on 
the r o o t  l o c i .  

3. Maximize t h e  s i z e  of t h e  dominant p e r i o d i c  s o l u t i o n  and, i f  
p o s s i b l e ,  e l i m i n a t e  i t  e n t i r e l y .  

One or more p o i n t s  i n  t h a t  reg ion  o f  t h e  E space w i t h i n  which - a l l  

of t h e  three c r i t e r i a  are s a t i s f i e d  i n  a reasonable  manner can be  used 

t o  i n i t i a t e  t h e  sea rch  of t h e  performance s u r f a c e  f o r  t h e  opt imal  l i n e a r  

or PWL switching func t ion  parameters ,  or t h e  c o s t  can be eva lua ted  a t  

s e v e r a l  po in t s  t o  determine a l i n e a r  swi t ch ing  func t ion  which w i l l  pre- 

sumably be c l o s e  t o  t h e  op t ima l .  

* 
See Chapter 26 of G i l l e ,  P e l e g r i n ,  and Decaulne [ R e f .  171 . 
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The methods descr ibed i n  the  preceding s e c t i o n  f o r  analyzing l i n e a r  

swi tch ing  func t ions  w i l l  be appl ied to t h e  second-order p l a n t  w i th  

t r a n s f e r  func t ion  

and t h e  i n t e r p r e t a t i o n  of t h e  r e s u l t s .  

c r i b i n g  t h e  s y s t e m  is  

2 
l / ( s  + 2Cs + 1) i n  o r d e r  to  show t h e i r  usefu lness  

The d i f f e r e n t i a l  equat ion des- 

T 
where e = (e,;) and IuI = 1. 

I t  is easier to c o n s t r u c t  the phase-plane trajectories of t h e  system i f  

t h e  canonica l  v a r i a b l e s  def ined by t h e  fol lowing t ransformat ions  are 

usee! : 

- 

* 

where v - -- and 

The t r a j e c t o r i e s  of the  canonical  v a r i a b l e s  are logr i thmic  s p i r a l s  w i t h  
T 

f o c i  a t  x = + (u,O). 

Since the  p l a n t  is  of second-order t h e  l i n e a r  switching func t ion  

< 1. 

- - 

given by Eq. (3.1) t akes  t h e  form 

1 (J = e2 + ae 

and Eq. (3.3) becomes 

- =  s + a .  
E ( s )  

(3 .8)  

(3.9) 

~~ ~ 

* 
See pp. 124-129 of F ldgge-h tz  and Yin [Ref. 181 f o r  a d e r i v a t i o n .  
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Therefore, the switching function is represented in the s-plane by a 

single real zero and the plant by two poles whose location depends upon 

the parameter <. 
Consider the situation when [ = -0.2. As seen in Fig. 6 ,  the poles 

are a complex pair slightly into the RHP so that some portion of the 
root loci must lie in the RHP, no matter what value Q has. According 

to the arguments of the previous section there will be some region of 

the phase-plane for which the trajectories are unstable for any linear 

switching function. In Fig. 7 the stability boundaries in the canonical 

phase-plane and the corresponding root-locus plots are shown for several 

representative values of Q. By setting Eq. (3.8) equal to zero and 

applying the transformation of Eq. (3.7b), the equation of the switching 

line in the canonical space is found to be 

x 2 = -  (lye) x l .  
The manner in which the equivalent linear system, i.e., the root-locus 

plot, depicts the salient features of the nonlinear system, i.e., the 

phase-plane plot, is described below: 

1. Figures 7a and b (a= 4) .  The zero is well .in the LHP, 
implying that the chatter motion decays rapidly (time 
constant = 1/4 second). However, the angle of departure 
of the locus from the upper pole is only slightly over 
90° meaning that the locus exists for an appreciable 
distance in the RHP. This implies that the stability 
region may be smaller than that for Q = 1, where (41 
has a larger value. Comparison of the stability regions 
in Figs. 7a and c verify that this is the case. 

2 .  Figures 7c and d (a = 1). The zero is still well in the 
LHP and (0 has a larger value than for a! = 4 ,  implying 
that the chatter motion is stable and the region of 
stability should be larger, which it is. 

3. Figures 7e and f (a = -1). Again the loci leave the 
poles with (0 considerably closer to 180° than when 
Q = 4, implying a large stability region. However, the 
zero in the RHP means that the chatter is unstable and 
the state can never reach the origin and remain there. 
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The phase-plane p l o t  i n d i c a t e s  t h a t  t h e  non l inea r  s y s t e m  
has gained a s t a b l e  l i m i t  C y c l e  toward which any t ra jec-  
tory  s t a r t i n g  i n s i d e  the  s t a b i l i t y  boundary w i l l  move, 
even one s t a r t i n g  a t  t h e  o r i g i n .  

Of the  t h r e e  p o s s i b l e  swi tch ing  f u n c t i o n s  shown, t h e  one wi th  a =  1 

would presumably r e p r e s e n t  t h e  b e s t  c h o i c e ,  a conclus ion  which can be 

drawn r e a d i l y  from t h e  r o o t  l o c i .  If 0 < a <  1, t h e  c h a t t e r  motion i s  

s t a b l e  but t h e  t i m e  c o n s t a n t  becomes l a r g e ,  approaching i n f i n i t y  as (2 

approaches ze ro .  However, t h e  p o i n t  of t h i s  d i scuss ion  has  been only  t o  

i l l u s t r a t e  t h e  a p p l i c a t i o n  of t h e  des ign  procedure and hope fu l ly  t o  g ive  

t h e  reader  some conf idence  i n  i t s  u t i l i t y .  I t  w i l l  be  found t o  be con- 

s i d e r a b l y  more use fu l  i n  t h e  higher-order examples t o  be worked l a t e r .  

I t  i s  i n t e r e s t i n g  t o  no te  t h a t  i f  t h e  s i g n  of t h e  swi tch ing  f u n c t i o n  

had been reversed  ( i . e . ,  < 0 )  t h e  feedback would be p o s i t i v e  and one 

would expect t he  non l inea r  s y s t e m  t o  be u n s t a b l e ,  as i t  i s .  The r o o t  

l o c i  r e f l e c t  t h i s  s i t u a t i o n  by r e q u i r i n g  use of t h e  0 l o c i  r a t h e r  than 

t h e  180° l o c i .  S ince  t h e  p o s i t i v e  r e a l  a x i s  t o  t h e  r i g h t  of t h e  l a s t  

real  s i n g u l a r i t y  i s  a l w a y s  on t h e  0 l o c i ,  such a s y s t e m  would a l w a y s  

be uns t ab le .  

Pn 

0 

0 

C .  DESIGN OF PWL SWITCHING FUNCTIONS 

From the  d i scuss ion  of t h e  prev ious  s e c t i o n  i t  i s  apparent  t h a t  as 

t h e  ze ros  corresponding t o  t h e  l i n e a r  swi tch ing  func t ion  are moved t o  

the  l e f t  i n  t h e  s-plane t h e  ra te  of decay of t h e  c h a t t e r  motion i s  in -  

c reased  and presumably t h e  c o s t  f o r  small d i s t u r b a n c e s  i s  reduced. How- 

e v e r ,  as they are moved f u r t h e r  t o  t h e  l e f t  t h e  ze ros  e x e r t  a dec reas ing  

in f luence  upon t h e  l o c i  depa r t ing  from t h e  p o l e s .  I f  t h e  p l a n t  has 

t h r e e  or more p o l e s  and no ze ros  are p r e s e n t ,  a t  l eas t  one of t h e  l o c i  

w i l l  e n t e r  t h e  RHP. S h i f t i n g  t h e  ze ros  w e l l  t o  t h e  l e f t  o f  t h e  po le s  

w i l l  make the  l o c i  approach these  no-zero-loci. 

n > 3 ,  t h e r e  i s  a l i m i t  t o  how f a r  t h e  z e r o s  may be moved t o  t h e  l e f t  

i n  t h e  s-plane wi thout  caus ing  one or more of t he  t r a j e c t o r i e s  t o  be- 

come uns t ab le .  

11 Therefore ,  when 11 

- 
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I n  an e f f o r t  to  have both a r ap id ly  decaying response for  s m a l l  d i s -  

turbances and a l a r g e  region of  s t a b i l i t y  i t  i s  reasonable  t o  cons ider  

moving the switching func t ion  zeros to t h e  r i g h t  o r  l e f t  i n  t h e  s-plane 

depending upon the  state of t h e  system. 

Linear switching c o n s t r a i n s  the  des igner  to  a f ixed  set of zeros, 

bu t  t he  PWL switching func t ion  can be t r e a t e d  i n  a q u a l i t a t i v e  sense as 

a s h i f t i n g  of t he  ze ros ,  dependent upon the  state vec to r  e. This  s h i f t -  

ing  of the  ze ros  i s  accounted f o r  by t r e a t i n g  the PWL func t ions  

a s  equiva len t  ga ins  which are ra i sed  o r  lowered when e exceeds the  

- 
ai(ei) 

'- break po in t s .  T h i s  same procedure has been used by Schmidt [Ref. 31 t o  

compute nonl inear  func t ions  of a s i n g l e  state v a r i a b l e  such tha t  t h e  

switching func t ion  zeros  move i n  a manner which i s  deemed d e s i r a b l e .  

Because t h e  s h i f t i n g  of t h e  zeros  by means of the PWL func t ions  is  a sec- 

ond equiva len t  l i n e a r i z a t i o n  heynnd the linearization of the c o n t a c t o r ,  

n e i t h e r  one of which can be j u s t i f i e d  on a r igorous  b a s i s ,  any r e s u l t s  

der ived  from i ts  app l i ca t ion  should be used w i t h  cau t ion  and must be 

subjec ted  t o  computer v e r i f i c a t i o n .  

i 

The f i r s t  problem to  be solved i n  t h e  design of a FWL swi tch ing  sur-  

f a c e  i s  t h e  s e l e c t i o n  of  the component of t he  switching func t ion  to  be 

made PWL and of reasonable  va lues  which the  parameters desc r ib ing  t h i s  

component should have. These prel iminary s t e p s  are e s s e n t i a l  i f  a per- 

formance su r face  s u i t a b l e  f o r  op t imiza t ion  is  to be found. The genera l  

cri teria described i n  t h e  previous s e c t i o n  w i l l  be followed i n  so lv ing  

t h i s  problem. 

I f  i t  i s  p o s s i b l e  t o  express  t h e  d e s i r e d  zero s h i f t i n g  i n  terms of 

a root- locus index such as angle  of depa r tu re  whose va lue  i s  t o  be in- 

c reased  or decreased as the  ze ros  s h i f t ,  then t h e  p a r t i a l  d e r i v a t i v e s  

of t h i s  quan t i ty  w i t h  r e spec t  to t h e  l i n e a r  switching func t ion  parameters 

may be eva lua ted .  By knowing the pa r t i a l  d e r i v a t i v e s  and a l s o  the  ap- 

proximate ranges over  which the  s t a t e  v a r i a b l e s  w i l l  va ry ,  the  des igner  

can o b t a i n  a q u a l i t a t i v e  ind ica t ion  of t h e  manner i n  which the switching 

func t ion  components should be made PWL. 
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According t o  t h e  above arguments, t h e r e  are two c o n d i t i o n s  which are 

necessary  i n  o r d e r  t o  improve t h e  s y s t e m  performance by making one o f  

t h e  components of 0,  s a y  oi(ei)  WL. F i r s t ,  t h e  p a r t i a l  d e r i v a t i v e  

of t h e  root-locus index w i t h  r e s p e c t  t o  pi should be as l a r g e  as poss i -  

b l e .  Second, t h e r e  must be a l a r g e  enough d i f f e r e n c e  i n  t h e  range over  

which e v a r i e s  f o r  l a r g e  and s m a l l  d i s tu rbances  t o  i n s u r e  t h a t  t h e  

change(s) i n  s lope  a t  the  breakpoin t (s1  of 0 . ( e . )  w i l l  a f f e c t  t h e  

responses  f o r  l a r g e  d i s tu rbances  but  no t  t hose  for small d i s tu rbances .  

i 

1 1  

Also, t h e  swi tch ing  func t ion  can be made PWL on t h e  b a s i s  of t h e  

dominant pe r iod ic  s o l u t i o n .  This  i s  accomplished by choosing t h e  PWL 

parameters so t h a t  t h e  i n t e r s e c t i o n  of t h e  swi tch ing  s u r f a c e  and t h e  

locus  of poss ib l e  p e r i o d i c  s o l u t i o n  swi tch ing  p o i n t s  y i e l d s  as l a r g e  a 

p e r i o d i c  so lu t ion  as p o s s i b l e .  I t  i s  c lear  t h a t  i f  t h e  p e r i o d i c  so lu-  

t i o n  corresponding t o  a p a r t i c u l a r  l i n e a r  swi tch ing  func t ion  i s  t o  be 

en larged  o r  e l imina ted ,  t h e  breakpoin t  of t h e  PWL 0 must be smaller 

than lei/  a t  i t s  switching p o i n t s .  
i 

The p a r t i a l  d e r i v a t i v e s  of t h e  ang le  of depa r tu re  of t h e  locus  from 

an o s c i l l a t o r y  po le  w i t h  r e s p e c t  t o  t h e  swi tch ing  f u n c t i o n  can be  eva l -  

ua ted  i n  the fo l lowing  manner. The ang le  of d e p a r t u r e  i s  a p rope r ty  of 

t h e  r o o t  locus  and, s i n c e  t h e  po le  l o c a t i o n s  are f i x e d ,  i t  must be a 

func t ion  of the (n-1) ze ro  parameters ti . Furthermore, t h e  

d e f i n e  the r o o t s  of t h e  
ti  

(n-1Ist-order polynomial w i t h  c o e f f i c i e n t s  

as ind ica t ed  i n  Eq. ( 3 . 4 ) .  Therefore ,  t h e  n p a r t i a l  d e r i v a t i v e s  
pj 
def ined  by 

may be found by applying t h e  cha in  r u l e  of p a r t i a l  d i f f e r e n t i a t i o n ,  

n-1 

j = 1 , 2 , . . , n .  

i=l 

(3.10) 
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I f  pn = 1 the  va lue  of b / a p n  cannot be found by applying Eq. 

(3.10) because 

ei. 
tween t h e  

components of &$/ak . 
s i n c e  t h e  switching func t ion  is followed by  a con tac to r ,  t h e  l i n e a r  

switching c o e f f i c i e n t s  

without  a f f e c t i n g  e i t h e r  u ( t )  or the l o c a t i o n s  of  t he  ze ros .  

pn w i l l  not  appear as a v a r i a b l e  i n  the  equat ions  f o r  

On the o t h e r  hand, s i n c e  the re  is  one a r b i t r a r y  r e l a t i o n s h i p  be- 

t h e r e  must be a corresponding r e l a t i o n s h i p  between t h e  

To de r ive  t h i s  r e l a t i o n s h i p  i t  i s  noted t h a t ,  
P j  

can be mul t ip l i ed  by any p o s i t i v e  cons t an t  
P j  

Therefore ,  i f  each component of Q i s  mul t ip l i ed  by the cons t an t  

(1+ E) where E i s  a r b i t r a r y ,  i t  fol lows t h a t  

I f  E << 1, @(e = €e) may be expanded about t h e  point e and a i l  t e r m s  

of o r d e r  c2 and higher  dropped, y i e ld ing  

Since t h e  above t w o  equat ions  must hold f o r  a r b i t r a r y  E , i t  fol lows 

t h a t  

= 0, do 
p j  

3 j= 1 

(3.11) 

so t h e  nth component of &@/&e can be found i f  t he  other (n-1) are 

known. Using Eqs. (3.10) and (3.11), the  equat ions  f o r  t h e  n p a r t i a l  

d e r i v a t i v e s  can be w r i t t e n  as 
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and 

(3.12b) 

A simple example of t h e  c a l c u l a t i o n  of &/ap and i t s  use  i n  t h e  

PWL design i s  given b y  the p l a n t  w i t h  t r a n s f e r  f u n c t i o n  

which was t r e a t e d  i n  t h e  previous s e c t i o n .  From E q .  ( 3 . 5 ) ,  w i th  n = 2 ,  

i t  fol lows t h a t  t h e  zero  parameter v e c t o r  

4,  = 01. 

switching parameter v e c t o r  E i s  given by e = (a, 1). Since  t h e  root 

locus  i n  the  v i c i n i t y  of t h e  p o l e s  i s  a c i r c l e  centered  a t  t h e  zero  (see 

F ig .  6 ) ,  t he  angle  of depar ture  i s  given by 

l / (s2 - 0.4 s + 1) 

5 i s  simply t h e  scalar 

By comparing E q s .  (3 .3)  and (3.9)  i t  i s  apparent  t h a t  t h e  l i n e a r  
T 

a = - -  V ' + arc t a n  
2 4 1 - 5  * 

Because n = 2 and El = pl, E q .  (3.12a) reduces t o  

2nd E q .  (3.12b) reduces t o  

Solving f o r  &/at, and s u b s t i t u t i n g  a: for el y i e l d s  
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Figure  8 shows t h e  two components of  

l o c a t i o n  a , where the  va lues  of < = -0.2 and I/ = 0.98 have been 

used.  The f a c t  t h a t  a@/ap, < 0 when a > 0 impl ies  t h a t  the  e f f ec -  

t i v e  va lue  of 4) can be increased by making o1 be PWL, wi th  a de- 

crease i n  s lope  a t  t h e  breakpoint .  Likewise,  making 

t h e  s lope  i s  increased  a t  i t s  breakpoint should improve the  size of t h e  

s t a b i l i t y  reg ion .  

&/a& p l o t t e d  a g a i n s t  t h e  zero  

be PWL so tha t  *2 

The o t h e r  cond i t ion  necessary f o r  the s y s t e m  performance to  be i m -  

PWL is  ‘i proved by making a p a r t i c u l a r  switching func t ion  component 

t h a t  e must range over  a set of va lues  l a r g e  enough so t h a t  i t  would 

exceed the  breakpoin ts  of ai. 
of  - e w i l l  become l a r g e  i f  e i t h e r  one does ,  due to t h e  o s c i l l a t o r y  

na tu re  of t h e  po le s .  Therefore ,  one would expect  tha t  making e i t h e r  

one of the  

i n g  a r e l a t i v e l y  good small-disturbance response.  Th i s  should be no 

s u r p r i s e  because,  as w a s  mentioned i n  Sec. 11-A, when t h e  s ta te -space  

i s  on ly  two-dimensional t he  same FWL swi tch ing  func t ion  can be obta ined  

by making e i t h e r  one of the  components PWL. 

i 
For t h i s  p a r t i c u l a r  p l a n t  both components 

oi PWL would improve t h e  region cf stabfllty w h i l e  r e t a i n -  

a PWL ‘1 To g ive  a q u a l i t a t i v e  p i c t u r e  of t h e  e f f e c t  of making 

f u n c t i o n  w i t h  one breakpoint  consider  F ig .  9. The l i n e a r  po r t ion  of t h e  

switching func t ion  corresponds t o  01= 4 which r e s u l t s  i n  a good small- 

d i s tu rbance  response but  a s m a l l  region of s t a b i l i t y  (see Fig.  7a ) .  The 

breakpoin t  and change i n  s lope  o f  ol 
e f f e c t i v e  va lue  of 4) has been r a i sed  f o r  t h e  l a r g e r  states. Examina- 

t i o n  of t h e  sample t r a j e c t o r i e s  i n d i c a t e s  t h a t  the  o r i g i n  i s  s t a b l e  f o r  

a l l  states w i t h i n  t h e  l i m i t  c y c l e  shown, which i s  v i r t u a l l y  the largest 

s t a b i l i t y  reg ion  ob ta inab le  w i t h  

PWL swi tch ing  func t ion  shown has been t o  provide a s u b s t a n t i a l  improve- 

ment i n  t h e  combined la rge-  and small-dis turbance response over  t h a t  

o b t a i n a b l e  w i t h  l i n e a r  swi tch ing ,  a t  on ly  a small i nc rease  i n  swi tch ing  

f u n c t i o n  complexity.  

have been chosen so t h a t  t h e  

1ul - < 1. Therefore ,  the  e f f e c t  of the 

To i l l u s t r a t e  the second design c r i t e r i o n  t h e  PWL swi tch ing  func t ion  

i s  examined from the  po in t  of view of i t s  e f f e c t  upon t h e  s ize  of t he  

p e r i o d i c  s o l u t i o n .  I n  t h i s  second-order case t h e  p e r i o d i c  s o l u t i o n  i s  
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t h e  uns t ab le  l i m i t  c y c l e  o u t s i d e  of which a l l  t r a j e c t o r i e s  grow without 

bound. The equat ions  for  t h e  locus of poss ib l e  switching p o i n t s  i n  t h e  

canonica l  space,  expressed i n  terms of t h e  quarter-per iod 3,  are * 

- s i n  2* 
cos  2v$ + cosh 2& ' 

and x = +  2 

When l i n e a r  switching i s  used wi th  Q = 4 t he  switching l i n e  i n t e r -  

sects t h e  locus  of poss ib l e  switching p o i n t s  shown i n  Fig.  10  a t  t h e  

p o i n t s  N and NZ, and t h e  r e s u l t i n g  s t a b l e  reg ion  is as shown i n  

Fig.  7a. When the  switching funct ion i s  made PWL so t h a t  (J = 0 along 

the  dashed l i n e ,  t h e  i n t e r s e c t i o n s  of the switching l i n e  and t h e  locus  

of periodic s o l u t i o n  switching poin ts  move frnm Nl znd N +IC W *  "2 1 
and Na giv ing  the cons iderably  l a r g e r  region of s t a b i l i t y  shown i n  

Fig.  9. 

1 

F i n a l l y ,  the merits of t he  PWL switching func t ion  over  l i n e a r  switch- 

i n g  can  be evaluated on the  b a s i s  of how w e l l  each one approximates t h e  

opt imal  switching curve.  I n  Fig. 11 t h e  opt imal  curve ,  which w a s  f i r s t  

found by Bushaw [Ref. 191, i s  compared wi th  the  l i n e a r  and PWI, switch- 

i n g  l i n e s  d iscussed  i n  connection with Fig.  9. I t  is apparent t h a t  t h e  

PWL curve y i e l d s  a considerably b e t t e r  approximation t o  the  opt imal  

curve than does the  l i n e a r  switching l i n e .  

* 
The equat ions  i n  terms of el and e2 a r e  given by FlGgge-Lotz 

[Ref. 81 and can be transformed t o  the  canonica l  v a r i a b l e s  by using 
Eq. (3.7b). 
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IV. THIRD-ORDER EXAMPIX 

A. STATEMENT OF THE PROBLEM AND OUTLINE OF THE SOLUTION METHOD 

As a first example illustrating the design of a PWL switching func- 

tion and the types of plants and initial conditions for which PWL switch- 
ing can be expected to give good performance, the plant with transfer 

function l/s(s + 1) is considered. Schmidt's design method [Ref. 31 

based upon the first switching instant being optimal cannot be applied 

to this plant because of the undamped oscillatory roots. The design 

method of Flagge-htz and Titus 

this plant but Kashiwagi [Ref. 201 has shown that the method fails to 

yield satisfactory responses when the plant poles are moved more than 

moderately to the left in the s-plane, (say to the left of 

Because the plant with all three roots on the imaginary axis (two imagi- 

nary and one at the origin) presents a more challenging design problem 

than the one with well-damped roots, it will be examined first in con- 

siderable detail. To verify that the damping of the roots poses no 

problem to the proposed design methods and to obtain a quantitative 

comparison of PWL switching functions to the quasi-optimal switching 
function of Flggge-htz and Titus in this situation, the plant with 

transfer function will be considered briefly 

at the end of the chapter. 

2 

[Ref. 61 was derived specifically for 

Re [ s ]  = -0.3). 

l/(s -E 0.5)(s2 + 0 . 8 s  + 1) 

2 The differential equation of the l/s(s + 1) plant has the form 

T . .. 
where e = (e,e,e ) and IuI = 1. - 

It is assumed that the control system is subject to step-function 

inputs, which are equivalent to having initial conditions along the 

axis. The initial values of el will be taken as the integers 

1, 2 ,  ..., 8 and the cost function is given by Eq. ( 2 . 2 )  with K = 8, 

namely, 

el 
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8 

The cos t - f r ee  reg ion  surrounding t h e  o r i g i n  i s  def ined  by t h e  in-  

e q u a l i t i e s  

( lel  + 0.5 e .I < 0.10 1 3 -  

lel - 0.5 e31 5 0.10 
s =  J 

le2 + 0.5 e I < 

le2 - 0.5 e 3 -  I < 0.10 J 0.10 L 3 -  

This reg ion ,  which i s  ske tched  below, i s  t h e  ex tens ion  t o  t h r e e  dimen- 

s i o n s  of t h e  para l le logram used i n  t h e  second-order example of Chapter 11. 

2 e 
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As a consequence of the 
tories in the canonical spa 

0 e 

T (sec.) 
0 

relatively 

1 2 3 4 5 6 7 8 

3.09 3.92 4.56 5.12 5.64 6.14 8.97 9.95 

simple geometry of the trajec- 

e, the opt-mal times for the initial states 

along the e axis to reach the origin, (To)k, were evaluated by find- 1 
ing a control which transfers the state to the origin and maxi- 

mizes the Hamiltonian. Since this control is unique for linear plants 

and the minimum-time criterion, A(t) must be the optimal control. 

The values of 

fine J are given below. 

G(t) 

* 

To corresponding to the initial conditions used to de- 

Alternatively, the 

and Yin [Ref. 181 . 
S, (Tslk, are found by using Eq. (2.3) with 

To can be obtained by using the method of Flggge-Lotz 

The approximate optimal times to reach the region 

A = 0.20. 

The following canonical transformation will be used at times: 

In the x space the differential equation becomes - 

Examination of the preceding differential equation will show that for 

constant u the x coordinate changes linearly with time while the 

x and x coordinates describe circles about the points 
1 

x2 = 2 2 3 
x3 = 0. 

* 
See Chapter 3 of Pontryagin et al. [Ref. 13 . 
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When linear switching is used, the switching function takes the 

form of Eq. (3.1) with n = 3 and p3 = 1, namely, 

From Eq. (3.5) and a comparison of like powers of s in Eq. (3.4) the 

two-component linear switching-function parameter vector 4 is seen to 

be 

(4.4) 

Having defined both the system and the cost function, the problem 

is to design a PWL switching function which minimizes the cost 

The first step is to obtain a preliminary linear switching function by 

applying the methods described in Chapter 111. This design is used to 

initiate the linear switching performance-surface search on a hybrid 

computer and it is demonstrated that this surface can be readily searched 

to obtain the optimal linear switching function. Following this, an 

optimal PWL switching function will be found by applying the other tech- 

niques of Chapter I11 and searching the resulting performance surface. 

J ( ( p } ) .  

B. LINEAR SWITCHING DESIGN GUIDES FOR THE THIRD-ORDER EXAMPLE 

The following three criteria are used in designing the linear 

switching function: 

1. The maximum real part of the switching function zeros is 
minimized. 

2. The angle of departure of the root locus from the complex 
0 poles is kept close to 90 . 

3. The size of the dominant periodic solution is maximized. 

The three design guides used in evaluating the above criteria are eval- 

uated in terms of in this section. 
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FIG. 12. TYPICAL ROOT-I.OCUS PWTS FOR THE THIRD-ORDER EXAMPU 

1 .  Maximum Real Part of the Zeros 

A s  shown by the root loc i  of Fig. 12, the maximum real part of the  

zeros (denoted by -am) is given by 
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The line in the f plane corresponding to 5 = 1 is e2 = 2 %  . 
By using Eq. (4.4) to write the preceding equation in terms of 

t2 and then manipulating it SO that e2 is expressed as a function of 

t1 and am, the lines in the E plane of constant am are found to be 

41 and 

am These lines are plotted in Fig. 13a for representative values of 

2. Angle of Departure of the Root Locus from the Complex Poles 

The use of the definition of the 180 root loci and the geometrical 0 

relationships shown in Fig. 12 leads to the following expression for the 

angle of departure Q : 

(4.6) 2 -  Q =  e , + e  

If 8 ,  and 9, are expressed in terms of 5 and W ,  the following 

expression is obtained for  @ which is valid for all 5 > 0 : 

@ = arc tan 2 5. 
u2 - 1 

Use of Eq. (4.4) gives the relationship, 

(2 

4, - @ = arc tan (4.7) 

By writing Eq. (4.7) as 

of constant @ are merely straight lines passing through the point 

5 = (1,O) 

e2 = (4 1 - 1) tan 0 ,  it is apparent that lines 

T with a slope of tan @, which implies that the angle between 
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a line of constant @ and the el axis is merely @. In Fig. 13b 
lines of constant @ in the 5 plane are shown. 

3. Size of the Dominant Periodic Solution 

It was determined by analog simulation that the dominant periodic 

solution for the plant under consideration is as shown in Fig. 31, in 

Appendix A. It is shown that for this periodic solution to exist with 

linear switching the quarter-period I+$ must satisfy Eq. (A6) which 

becomes 

when el is substituted for p, and p3 is set equal to unity. As 

indicated by Fig. 31 the size of the periodic solution is constant for 

constant 3 which is equivalent to constant el, provided that 
Several lines of constant dominant periodic solution size are plotted in 

Fig. 13c and the corresponding amplitude of the error variable 

given. 

41 > 

e3 is 

It is interesting to note that the two different methods for infer- 

and that 0 ring stability-in-the-large, namely, requiring that 101 > 90 
no periodic solution exist, both yield the same requirement which is 

that el < 1. 

C. DESIGN OF THE OPTIMAL LINEAR SWITCHING FUNCTION FOR THE THIRD-ORDER 
EXAMPLE 

Having accumulated the above qualitative information, it is a rela- 

tively simple matter to reduce the likely candidates for the optimal 

linear switching-function parameters to a relatively small area in the 

two-dimensional parameter space. From examination of Fig. 13a, it 

appears reasonable that the parameters should lie somewhere near the 

line corresponding to 

is obtained for a given value of 4 1' 
must be raised as el is increased in order to keep 4 from becoming 

so low that stability becomes a problem, e.g., 

5 = 1, where the fastest rate of decay in chatter 

t2  Figure 13b indicates that 

@ < 60°. Figure 13c 
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shows tha t  as el i s  increased  p a s t  el = 1 t h e  s ize  o f  t h e  p e r i o d i c  

s o l u t i o n ,  and presumably of t h e  s t a b i l i t y  r eg ion ,  dec reases  q u i t e  r a p i d l y ,  

independent of e2. This imp l i e s  t h a t ,  as el and e2 are inc reased  

i n  an e f f o r t  t o  i nc rease  t h e  ra te  of decay i n  c h a t t e r  and keep @ from 

being too low, t h e r e  i s  some va lue  beyond which el may n o t  be r a i s e d ,  

r ega rd le s s  of any changes i n  e2. 
Should t h e  des igner  want t o  choose an i n i t i a l  set  of parameters i n  

o r d e r  t o  search  t h e  performance s u r f a c e  f o r  t h e  opt imal  l i n e a r  switch- 

i n g  func t ion  ( f o r  t h e  p a r t i c u l a r  c o s t  f u n c t i o n  used) a reasonable  start-  

i n g  po in t  would be 5 = (1,2). 

t a k e s  on i ts  l a r g e s t  va lue  f o r  t h a t  p a r t i c u l a r  va lue  of That t h i s  

i s  a reasonable choice  i s  shown i n  F ig .  14 where contours  of t h e  a c t u a l  

performance su r face  def ined  by Eq. (4 .2)  are  given. I t  i s  seen t h a t  t h e  

suggested i n i t i a l  choice  of E ,  l a b e l e d  P i s  q u i t e  c l o s e  t o  t h e  

opt imal  va lue  of E and r e p r e s e n t s  a c o s t  of J = 1.53 ve r sus  J = 1.20 

f o r  t h e  bes t  l i n e a r  switching func t ion .  

0 Here d) = 90 , le31m = 03, and 
T 

el. 

1’ 

To v e r i f y  t h a t  t h i s  choice  i s  f e a s i b l e ,  t h e  g rad ien t  s ea rch  p rocess  

descr ibed  i n  Appendix B w a s  used t o  f i n d  t h e  optimal l i n e a r  swi tch ing  

parameters.  However, f o r  t h e  purposes of i l l u s t r a t i o n ,  t h e  sea rch  w a s  

i n i t i a t e d  from f i v e  p o i n t s  (denoted P2 ,P3 , . . . ,P6  i n  F ig .  14) r e l a t i v e l y  

f a r  from the  reg ion  found by us ing  t h e  q u a l i t a t i v e  des ign  procedure.  

From po in t s  

s i x  i t e r a t i o n s  of t h e  sea rch  procedure.  However, t h e  sea rches  i n i t i a t e d  

from po in t s  P5 and P6 both found t h e  r e l a t i v e  minima i n  t h e  r eg ion  

near  f = (0.8,  1 .3 ) .  While t h e  presence of t h e s e  r e l a t i v e  minima may 

appear t o  be de t r imen ta l  t o  t h e  des ign  procedure,  they do not  pose a 

s e r i o u s  problem f o r  t h r e e  reasons .  F i r s t ,  t h r e e  of t h e  sea rches  found 

t h e  absolu te  minimum. Second, t h e  sea rches  were s t a r t e d  much f u r t h e r  

from t h e  absolu te  minimum than they would have been i f  t h e  proposed 

q u a l i t a t i v e  des ign  information had been used i n  guid ing  t h e i r  s e l e c t i o n .  

Th i rd ,  on t h e  b a s i s  of t h e  second-order r e s u l t s  presented  i n  Sec t ion  11-C,  

i t  seems l i k e l y  t h a t  t h e  r e l a t i v e  minima would be reduced i n  s i z e  and 

poss ib ly  disappear i f  more i n i t i a l  c o n d i t i o n s  were used i n  t h e  d e f i n i t i o n  

of t h e  cos t  func t ion .  

P2, P3, and P4 t h e  c o s t  was reduced t o  below 1 .25  w i t h i n  

T 
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J = 2.00 

X = RELATIVE MINIMUM 

PI =VALUE OF SELECTED ON BASIS OF QUALITATIVE DESIGN 

P2 - P6 =STARTING POINTS FOR SEARCH PROCESS 

PI = VALUE OF 1. FOR LINEAR PORTION OF OPTIMAL PWL DESIGN 

1 I 
0 1 2 

F I G .  14 .  CONTOURS OF J I N  THE E PLANE FOR LINEAR SWITCH- 
ING,  THIRD-ORDER EXAMPLE- 
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D. DESIGN OF A PWL SWITCHING FUNCTION FOR THE THIRD-ORDER EXAMPLE 

The sub-class of PWL switching functions to be considered is given 
by Eq. (2.1) and it remains to be decided which of the components 

oi(ei) 

oscillatory poles it is anticipated that the three-component row vector 

&$/he 
111-c. 

should be made PWL functions. Because the plant has undamped 

will provide a basis for this decision, as explained in Section 

By using Eq. (3.61, this vector is readily found to be 

(4 .9)  

where the necessary relationships beetwzcz E , e, and 0 are given by 

Eqs. (4 .4 )  and (4.7).  Letting &/3pi E Ci, where the Ci are constants, 

equations for the lines of constant &/ap  in the 5 plane can be i 
obtained. 

For example, when i = 1, the first component of E q .  (4.9) gives 

(E1- 1) 2 + e2 2 + - 42 = 0 .  
c1 

Completing the square yields 

which is the equation of a family of circles with radii 

tered at the points p = (1, - 1/2C1). Similarly, curves of constant 

C2 are given by 

l/21Cll cen- 
T 
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Because &/ap3 = - d@/ap,, t h e  cu rves  of cons t an t  C3 are i d e n t i c a l  

t o  those f o r  - C1. Lines i n  t h e  4 p lane  f o r  r e p r e s e n t a t i v e  va lues  

of &%&pi are p l o t t e d  i n  F ig .  15. 

Comparing t h e  l i n e s  of cons t an t  &$/hpi i n  F ig .  15 w i t h  t h e  con- 

t o u r s  of cons t an t  c o s t  i n  F ig .  1 4 ,  i t  i s  apparent  t h a t  i n  t h e  r eg ion  

of t h e  ( plane where J a t t a i n s  i t s  minimum va lue  la@/dp,l i s  con- 

s ide rab ly  smal le r  than I d@/hp,I and I-b@/dp31 . Also, s i n c e  t h e  i n i t i a l  

condi t ions  being considered are a long  t h e  e a x i s  and t h e  e and 

e3 coord ina tes  form an o s c i l l a t o r y  p a i r ,  t h e  e component of t h e  

e r r o r  vec to r  w i l l  vary  over a cons ide rab ly  g r e a t e r  range than  t h e  o t h e r  

two components. One f u r t h e r  c o n s i d e r a t i o n  i s  t h e  f a c t  t h a t  t h e  switch- 

1 2 

1 

ing  po in t s  of t h e  dominant p e r i o d i c  s o l u t i o n  depend upon P1 and P3’ 

but no t  p2 ,  as shown i n  Appendix A.  

For these  r easons ,  t h e  swi tch ing  func t ion  w a s  made PWL by adding 

one breakpoint t o  t h e  o1 component, y i e l d i n g  t h e  parameter a r ray  

where t h e  x ’ s  denote undefined elements.  

The breakpoint w a s  f i x e d  a t  p12 = 1 . 0  and t h e  g rad ien t  search 

procedure used t o  opt imize  t h e  t h r e e  s l o p e s  pll ,  P13’ and p 2 y  Yield- 

i n g  a minimum va lue  of J = 1.04  when t h e  g r a d i e n t  s ea rch  w a s  i n i t i a t e d  

c l o s e  t o  the optimal l i n e a r  swi tch ing  parameters where J i s  eva lua ted  

over  e i g h t  i n i t i a l  c o n d i t i o n s ,  as be fo re .  For t h e  r easons  given i n  

Sec t ion  11-D, t h e  random p e r t u r b a t i o n  sea rch  procedure was s u b s t i t u t e d  

f o r  t h e  grad ien t  method and used t o  f i n d  t h e  minimum c o s t  corresponding 

t o  t h r e e  values of t h e  breakpoin t ,  namely p12 = 0.5, 1 . 0 ,  and 2.0. 

For t h e s e  breakpoin ts  t h e  minimum values  of J found were 1 .10 ,  1 .04 ,  

and 1 .17 , r e spec t ive ly .  With p = 2.0 t h e  PWL swi tch ing  func t ion  

y i e lded  very l i t t l e  improvement i n  c o s t  over  t h a t  ob ta ined  w i t h  l i n e a r  

swi tch ing ,  presumably because t h e  breakpoin t  w a s  l o c a t e d  so f a r  o u t  

1 2  
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a long  the  e a x i s  t h a t  i t  w a s  unable  t o  a f f ec t  t h e  response from more 

than a por t ion  of those  i n i t i a l  cond i t ions  used.  However, t h i s  occur- 

rence  would seem t o  be a proper ty  of t h e  p a r t i c u l a r  p l a n t  and i n i t i a l  

condi t ions  chosen and should not  form t h e  b a s i s  f o r  any o v e r a l l  conclu- 

s i o n s  regarding t h e  l o c a t i o n  of t h e  breakpoin ts .  

1 

By measuring t h e  performance s u r f a c e  i n  t h e  v i c i n i t y  of i t s  minimum 

ve r sus  pll and p13 f o r  d i s c r e t e  va lues  of p21 and w i t h  p12 = 1 .0 ,  
i t  w a s  found t h a t  no r e l a t i v e  minima e x i s t e d  i n  t h e  reg ion  measured and 

t h a t  t h e  minimum value  of J w a s  indeed 1.04, as w a s  determined from 

the  gradien t  and random searches .  

To i n v e s t i g a t e  t h e  e f f e c t s  of making o2 and a3 PWL t h e  perform- 

ance sur face  w a s  measured f o r  s e v e r a l  va lues  of t h e  breakpoint  and 

va r ious  values of t h e  t h r e e  s lopes .  I t  w a s  found t h a t  making a3 PWL, 
wi th  ol and o2 l i n e a r ,  a f forded  a minimum c o s t  of J = 1.09,  whi le  

making az PWL gave e s s e n t i a l l y  no improvement over  l i n e a r  switching.  

The minimum values  of c o s t  ob ta ined  f o r  t hese  t h r e e  cases and f o r  l i n e a r  

switching a re  shown i n  Table 1, along w i t h  t h e i r  r e s p e c t i v e  opt imal  

parameter va lues .  

1.04 

1.19 

1.09 

1.20 

- 
io . 
- 
1 

2 

3 

4 
- 

2.40 

1.50 

1.95 

1.50 

TABLE 1. OPTIMAL SWITCHING FUNCTIONS FOR THE 

p12 

1 .oo 
X 

X 

X 

p1 3 

1.10 

X 

X 

. x  

p21 

2.30 

1.70 

2.30 

1.90 

p22 

X 

1 .oo 
X 

X 

2 l/s(s + 1) PLANT 

p23 

X 

1.90 

X 

X 

p3 1 

1.00 

1.00 

1 .oo 
1.00 

p32 

X 

X 

0.50 

X 

Note: x 
switching func t ion .  

denotes  an element of { p )  not  def ined  f o r  t h a t  p a r t i c u l a r  

p33 
- 

X 

X 

2.4: 

X 

and p11 I t  i s  i n t e r e s t i n g  t o  note  t h a t  the  opt imal  va lues  of 

P21 when a1 i s  PWL (row 1 i n  Table 1) correspond t o  a l i n e a r  switch- 

i ng  func t ion  wi th  p1 = 2.40 and p2 = 2.30. Examination of F ig .  14 

shows t h a t  t h i s  po in t  (denoted P7) l i es  on the  s t a b i l i t y  boundary of 
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t h e  l inear  switching parameter space, implying t h a t  i f  

PWL a t  least one of  t he  e i g h t  t r a j e c t o r i e s  used i n  measuring J would 

be uns tab le .  

crl were no t  

In  Fig.  16  t h e  system t r a n s i e n t  responses  obta ined  w i t h  those o p t i -  

m a l  PWL and l i n e a r  switching func t ions  whose parameters are given by 

rows 1 and 4 of Table 1 are shown f o r  the  e i g h t  i n i t i a l  cond i t ions  used 

i n  de f in ing  J. The opt imal  times f o r  t h e  state t o  reach  t h e  o r i g i n  are 

ind ica t ed  i n  Fig.  16a and i t  can be seen t h a t ,  wi th  t h e  except ion of 

t he  i n i t i a l  condi t ion  e = 6 ,  the  error w a s  reduced to below 0.05 be- 

f o r e  t h e  opt imal  t i m e  had elapsed.  The region S cannot be depic ted  

on Fig .  16;  however, le /  must be < 0.1 f o r  t he  state to  be wi th in  

S. The exac t  va lue  of e w i l l  depend upon the  s lope  and cu rva tu re  

(;? and G )  A comparison of  t h e  two f i g u r e s  

i n d i c a t e s  t h a t  t h e  only e s s e n t i a l  d i f f e r e n c e  between t h e  t w o  switching 

func t ions  i s  i n  t h e  small-disturbance response.  With the  l i n e a r  switch- 

i ng  func t ion  the  e r r o r  approaches zero a t  a somewhat slower rate than i t  

does wi th  t h e  PWL switching funct ion.  T h i s  is  t o  be expected because,  

from t h e  root- locus po in t  of  view discussed i n  Chapter 111, t h e  ze ros  

corresponding t o  t h e  l i n e a r  switching func t ion  must be loca t ed  f u r t h e r  

t o  t h e  r i g h t  i n  t h e  s-plane than those corresponding to t h e  l i n e a r  por- 

t i o n  of  t he  PWL switching func t ion  i n  o r d e r  to  i n s u r e  s t a b i l i t y  f o r  

l a r g e  states. For a l l  i n i t i a l  condi t ions  i n  t h e  range 

maximum overshoot w a s  0.02 f o r  t he  PWL switching func t ion  and 0.04 f o r  

t he  l i n e a r  switching func t ion .  

0 

- 

of the t r a n s i e n t  response. 

1 < eo < 8 ,  t h e  - - 

E. STABILITY CONSIDERATIONS FOR THE THIRD-ORDER EXAMPLE 

PWL a minimum cost of J = 1.04 

can be obta ined ,  one might a sk  what i s  to  be gained by making one or 

m o r e  o f  t h e  o t h e r  components of (5 be PWL. Since J = 1.00 when each 

of t h e  K t r a j e c t o r i e s  i s  opt imal ,  i t  i s  apparent  t h a t  t he  c o s t  of 

J = 1.04 cannot be reduced much f u r t h e r ,  r ega rd le s s  of what switching 

is  t h e  only PWL func t ion  and (p)  func t ion  is  used. However, when 

is  ad jus t ed  to  a t t a i n  t h i s  va lue  of c o s t ,  i t  can be shown t h a t  

t h e  opt imal  value of ( p )  , i s  extremely c l o s e  t o  the reg ion  i n  the  

4 Having found t h a t  by making 

4 
{$I  , 
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parameter space corresponding to  one o r  more uns t ab le  t r a j e c t o r i e s  among 

those  used to  de f ine  J. 

Figure 17  shows the  s t a b i l i t y  boundary i n  the P11, P i 3  plane f o r  

p12 = 1 . 0  
analog computer i n  t h e  r e p e t i t i v e  mode. The region t o  t h e  l e f t  of the  

s t a b i l i t y  boundary corresponds t o  PWL switching func t ions  f o r  which a l l  

i n i t i a l  cond i t ions  along the  e a x i s  between 0 < eo < 8 a r e  s t a b l e  

and the  region to  t h e  r i g h t  corresponds t o  switching func t ions  y i e l d i n g  

an uns t ab le  trajectory from at  l e a s t  one i n i t i a l  condi t ion  i n  t h i s  range. 

The p o i n t  i n  the parameter space corresponding to  i s  ind ica t ed  i n  

Fig.  17 and i t  can be seen t h a t  i t  l ies r e l a t i v e l y  close t o  the  s t a b i l i t y  

boundary. The s i t u a t i o n  shown i s  undes i rab le  i n  a p r a c t i c a l  c o n t r o l  

s y s t e m  because r e l a t i v e l y  s m a l l  f l u c t u a t i o n s  i n  t h e  c o n t r o l l e r  o r  p l a n t  

parameters  could result i n  iinstahle t r e > e c t o r i e s .  

and p21 = 2.30, as obtained by s imula t ing  the  system on t h e  

- 
1 - 1 -  

I n  add i t ion  t o  the  s t a b i l i t y  boundary i n  the  parameter space i t  i s  

of  s u b s t a n t i a l  engineer ing i n t e r e s t  t o  cons ider  the s t a b i l i t y  boundary 

i n  the s ta te-space.  When the  PWL switching func t ion  i s  descr ibed by 

{ p } ,  t he  s t a b i l i t y  boundary i n  the f i r s t  quadrant of t he  

i s  as shown i n  F ig .  18. I n  o t h e r  words, any i n i t i a l  condi t ion  f o r  which  

0 < e < 8 , e2 > 1 , and eo = 0 w i l l  be uns t ab le .  This  s i t u a t i o n  also 

poses  severe  drawbacks from an engineer ing po in t  of view because of the 

d i s a s t r o u s  consequences of i n i t i a l  cond i t ions  f o r  which e and e are 

not  very s m a l l .  

A 
el, e2 plane  

0 0 

- 1 -  3 

.. 

It  w a s  mentioned i n  Sec t ion  111-B t h a t  dur ing  numerous analog simu- 

l a t i o n s  the  ex i s t ence  o f  the  dominant pe r iod ic  s o l u t i o n  shown i n  F ig .  31 

has been observed t o  play a v i t a l  r o l e  i n  the  s t a b i l i t y  of the  sys t em.  

A s  shown i n  Appendix A, a condi t ion necessary f o r  t h e  ex i s t ence  of t h i s  

p e r i o d i c  s o l u t i o n  i s  t h a t  the switching su r face ,  i .e . ,  a l l  p o i n t s  where 

o =  0 ,  i n t e r s e c t  t h e  locus  of  poss ib le  switching p o i n t s  shown i n  F ig .  33. 

S ince  t h i s  locus  l i e s  e n t i r e l y  i n  the e e p l ane ,  on ly  the i n t e r -  

s e c t i o n  of t he  switching su r face  wi th  t h i s  p lane  need be considered.  If 

ol and o3 are both PWL w i t h  one breakpoint  ap iece ,  as shown i n  F ig .  19 ,  

t he  i n t e r s e c t i o n  of t he  switching su r face  wi th  the  e e p lane  w i l l  be 

as shown i n  Fig.  20. 

1’ 3 

1’ 3 
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P12 = 1.00 
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Q 

2 
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I- P21 = 2.30 

P11 = 1.00 

UNSTABLE 

FIG. 17. STABILITY REGION IN THE pl1, ~ 1 3  PLANE 
FOR Crl PIECEWISE-LINEAR AND INITIAL 
STATES ALONG THE el AXIS, THIRD-ORDER 
EXAMPLE: 

UNSTABLE 

STABLE 

0 I I I 
0 2 4 b 

= 1  

FIG. 18. STABILITY F?.EGION IN THE el, e2 PLANE 
FOR Cr1 PIECEWISE-LINEAR, THIRD-ORDER 
EXAMPLE: 
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I 
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FOR A TYPICAL PIECEWISE-LINEAR 
SWITCHING FUNCTION, THIRD-ORDER EXAMPLF, 

FIG. 20. INTERSECTION OF THE SWITCHING SURFACE WITH THE 
PLANE FOR 0 ( e  ) AND cJ3(e3) OF FIG. 19 

el' e3 1 1  
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Now i t  i s  an e a s y  matter t o  e v a l u a t e  t h e  e f f e c t  upon t h e  dominant 

p e r i o d i c  s o l u t i o n  of making o3 be PWL when ol i s  f i x e d  so as t o  

y i e l d  the minimum c o s t ,  i . e . ,  

(see row 1 of Table 1). When o3 i s  l i n e a r ,  w i t h  p31 = 1.00 ,  t h e  

i n t e r s e c t i o n  of t h e  swi tch ing  s u r f a c e  w i t h  t h e  e e p lane  i s  t h e  

l i n e  marked 

of t h i s  l i n e  and t h e  locus  of p o s s i b l e  pe r iod ic - so lu t ion  swi tch ing  p o i n t s  

a t  t h e  po in t s  N1 and N2 i n  F ig .  21 t h a t  t h e  cond i t ion  on t h e  switch- 

i n g  po in t s  necessary f o r  t h e  e x i s t e n c e  of t h e  p e r i o d i c  s o l u t i o n  has been 

s a t i s f i e d . *  Therefore ,  when only  

p e r i o d i c  s o l u t i o n  e x i s t s  e x a c t l y  as if t h e  swi tch ing  func t ion  were 

l i n e a r .  This s i t u a t i o n  accounts f o r  t h e  s m a l l  margin of s t a b i l i t y  both  

i n  t h e  parameter space for i n i t i a l  cond i t ions  a long  t h e  e a x i s  and 

i n  t h e  s ta te -space  for i n i t i a l  c o n d i t i o n s  n o t  a long  t h e  e a x i s .  

= 2.40, p = 1.00, and p13 = 1.10 p11 1 2  

1’ 3 
= 03 i n  F ig .  21. I t  i s  apparent  from t h e  i n t e r s e c t i o n  p32 

O1 i s  PWL w i t h  p = 1 .00 ,  t h e  1 2  

1 

1 
If a3 is made PWL w i t h  p = 2.00 and p33 = 2.00, t h e  i n t e r -  32 

s e c t i o n  of t h e  switching su r face  w i t h  t h e  

l i n e  i n  Fig. 21 denoted by I t  can be seen t h a t  t h e  switch- 

i n g  su r face  i n t e r s e c t i o n  l i n e  and t h e  locus  of p o s s i b l e  swi tch ing  p o i n t s  

become tangent t o  one another  b u t , . w i t h  t h e  t r i v i a l  except ion  of t h e  

o r i g i n ,  do no t  i n t e r s e c t .  

t w o  d i s t i n c t  types  of behavior can be seen by examination of t h e  l i n e  

marked F~~ = 1.00 .  Here, t h e  swi tch ing  s u r f a c e  has no n o n - t r i v i a l  

i n t e r s e c t i o n  wi th  t h e  locus  of p o s s i b l e  dominant p e r i o d i c  s o l u t i o n  

switching p o i n t s .  Furthermore, t h e  maximum va lue  a t t a i n e d  by I e3 I 
i n  any of t h e  t r a j e c t o r i e s  d e f i n i n g  t h e  c o s t  func t ion  i s  1 .00 ,  so t h e  

a d d i t i o n  of t h e  breakpoin t  and i n c r e a s e  of s l o p e  a t  p32 = 1.00 w i l l  

have no e f f e c t  upon t h e  minimum c o s t  o b t a i n a b l e  f o r  t h e  i n i t i a l  condi- 

t i o n s  comprising J .  Also ,  as long as p13/p33 < 1 t h e  s lope  of t h e  

swi tch ing  s u r f a c e  i n t e r s e c t i o n  i n  t h e  e e p l ane  w i l l  be g r e a t e r  

than -1 (see Fig .  20) and t h e r e  can be no i n t e r s e c t i o n  of t h e  

el,e3 p lane  becomes t h e  

p32 = 2.00. 

That p32 = 2.00 marks t h e  t r a n s i t i o n  between 

1’ 3 

* 
The su f f i c i ency  of t h i s  cond i t ion  has been v e r i f i e d  by ana log  

s imula t ion .  
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LOCUS OF POSSIBLE 
PERIODIC SOLUTION 
SWITCHING POINTS 

p32 p32 = 1.00 

2.00 

FIG. 21. II)CUS OF POSSIBLE PERIODIC SOLUTION SWITCHING POINTS 
AND INTERSECTIONS OF PIECEWISE-LINEAR SWITCHING SUR- 
FACES WITH THE el, e3 PLANE, THIRD-ORDER EXAMPLE 
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switching su r face  and the  locus  of p o s s i b l e  pe r iod ic  s o l u t i o n  switching 

p o i n t s  fo r  va lues  of lel[ l a r g e r  than those  shown i n  Fig.  21. 

The e f f e c t  upon the  s t a b i l i t y  region i n  the  parameter space of 

PWL with  p33 = 2.00 and wi th  var ious  va lues  of t he  break- making 

poin t  p32 can be seen i n  Fig.  22. The minimum c o s t  w a s  I = 1.04 for 

p32 - 
p11’ p13 
o3 was made PWL. 

space of making o3 PWL with  p32 = 1.00 and p33 = 2.00 was eva lua ted  

on t h e  analog computer. I t  was found t h a t  t h e  sys t em w a s  asymptot ica l ly  

s t a b l e  for a l l  i n i t i a l  condi t ions  i n  t h e  reg ion  llell 100. I t  was not  

poss ib l e  t o  a t t a i n  l a r g e r  i n i t i a l  s t a t e s  due t o  s c a l i n g  l i m i t a t i o n s ,  

bu t  it was observed t h a t  t he  cha rac t e r  of t h e  response was e s s e n t i a l l y  

independent of t he  s i z e  or l o c a t i o n  of t h e  i n i t i a l  s ta te ,  as long as it 

was l a r g e ,  i . e . ,  

O3 

> 1.00. Also, i t  was observed t h a t  t h e  po in t  of minimum c o s t  i n  t h e  

p lane ,  denoted ( b  } , remained e s s e n t i a l l y  unchanged when 

The e f f e c t  upon the  s t a b i l i t y  region i n  t h e  s t a t e -  

llgll > 10. 
Therefore,  i f  t he  switching func t ion  descr ibed  by the  array 

2.00 

2.40 1.00 

2.30 X 

1.00 1.00 

( P I  = (4.10) 

i s  used, the  r e s u l t i n g  system, which i s  shown i n  block-diagram form i n  

Fig.  23, w i l l  have a c o s t  of four  percent  above opt imal  for t h e  c o s t  

func t ion  def ined by Eq. (4.2),  s tep- func t ion  responses  a s  shown i n  Fig.  

16a,  and w i l l  be asymptot ica l ly  s t a b l e  a t  least  i n  t h e  region Ilell 5 100. 
From a performance su r face  searching  po in t  of view, t h e  reg ion  of 

s t a b i l i t y  i n  t h e  s ta te -space  could also be enlarged by us ing  a wider 

v a r i e t y  of i n i t i a l  cond i t ions  t o  de f ine  t h e  performance su r face  which, 

i n  t u r n ,  w i l l  r e s u l t  i n  a new value of {^p, . If t h e  i n i t i a l  cond i t ions  

chosen were not  t y p i c a l  of t h e  ope ra t ion  of t h e  s y s t e m  wi th  r e spec t  t o  

e2 and e 3 ,  then o t h e r s  could have been added. The choice of t h e  

switching func t ion  components t o  be made FWL and of the  i n i t i a l  va lues  

f o r  the PWL parameters t o  be searched would be c a r r i e d  ou t  a s  i n  the  

previous example. 

-64- 



FIG. 22. STABILITY REGIONS IN THE pl l ,  p13 

AILING THE el AXIS, THIRD-ORDER EXAMPLF: 

PLANE FOR VARIOUS VALUES OF 
p32 WITH BOTH al AND a3 PIECEWISE-LINEAR AND INITIAL STATES 

FIG. 23. BLOCK-DIAGRAM OF THE l/s(s2+ 1) PLANT WITH THE PIECEWISE-LINEAR 
SWITCHING FUNCTION CORRESPONDING TO THE ARRAY (4.10) 
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F. QUALITATIVE DESIGN OF LINEAR AND PWL SWITCHING FUNCTIONS FOR A 
THIRD-ORDER PLANT WITH DAMPED ROOTS 

To show t h a t  p l a n t s  having well-damped r o o t s  p re sen t  no d i f f i c u l t i e s  

f o r  t h e  q u a l i t a t i v e  des ign  procedures g iven ,  sub-optimal l i n e a r  and PWL 

switching func t ions  a r e  found f o r  t h e  l / ( s  + 0 . 5 ) ( s  + 0.8 s + 1) p l a n t .  

I t  i s  concluded t h a t ,  when t h e  p l a n t  r o o t s  are well-damped and t h e  

cos t - f r ee  reg ion  i s  of moderate s i z e  ( s a y  IIxII 0.20 f o r  t h i s  p l a n t ,  

i f  IuI = 1) l i n e a r  swi tch ing  can provide close-to-optimal response 

and making t h e  swi tch ing  func t ion  PWL cannot provide any s i g n i f i c a n t  

improvements i n  t h e  c o s t  or t h e  r eg ion  of s t a b i l i t y .  Likewise, t h e  

response t imes are cons iderably  less s e n s i t i v e  t o  t h e  swi tch ing  func t ion  

parameters than when t h e  p l a n t  po le s  are undamped. Only i f  t h e  c o s t -  

f r e e  region is q u i t e  small (say (Ix(1 < 0.02 

of PWL switching warranted. 

2 

* 

f o r  t h i s  p l a n t )  i s  t h e  use - -  

By applying t h e  q u a l i t a t i v e  des ign  c r i t e r i a  s t a t e d  i n  Sec t ion  B 

fou r  t r i a l  l i n e a r  swi tch ing  f u n c t i o n s  were s e l e c t e d  and t h e  t r a j e c t o r i e s  

from four  widely spaced i n i t i a l  cond i t ions  were s imula ted  on t h e  ana log  

computer. The response t i m e s  ob ta ined  w i t h  t h e  swi tch ing  func t ion  

y i e l d i n g  the  lowest t o t a l  response t i m e ,  i . e . ,  

(4.11) 

are shown i n  Table 2 wi th  t h e  corresponding i n i t i a l  c o n d i t i o n s  and 

opt imal  times. The t r a n s i e n t  responses are given i n  F i g .  24a. 

Kashiwagi [Ref.  201 has  found t h a t  t h e  quasi-optimal swi tch ing  func t ion  

of Flcgge-Lotz and T i t u s  [Ref .  61 reduced i n i t i a l  cond i t ion  No. 1 t o  

* 
[Ref .  61. 

The canonical v a r i a b l e  x i s  as de f ined  by Flcgge-Lotz and T i t u s  
For t h i s  p l a n t ,  o n e  o b t a i n s  

1 1 . 0 0 0  0.800 1.000 \ 
x =  [ 0.500 1.200. 0.400 1 - e . - 

0.458$ 0.916 / 
\ O  
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llxll < 0.20 i n  12.01 sec., versus 8.20 sec. f o r  t h e  l i n e a r  swi tch ing  

f u n c t i o n  given above. 
- -  

Optimal 

7.10 

6.12 

5.82 

5.96 

2 
TABLE 2. LARGE-DISTURBATCE REXPOME TIMES FOR THE 1 / ( ~ + 0 . 5 ) ( ~  + 0 . 8 ~ + 1 )  

PLA-VT W I T H  LINEAR SWITCHING GIVEN BY E&. (4.11) 

Linear Switching 

8.20 

7.05 

6.35 

7.10 

~ 

I n i t i a l  Condition 

5.5 

9.6 

1 . 6  

6.4 

I -27.7 23.2 

-4.0 

-9.1 

7.5 

2 

3 

15.6 

0.9 

II -14.9 4 

Response Time (sec.) 

Note: The opt imal  response t i m e  is t o  t h e  o r i g i n ;  t he  sub-optimal 
t i m e s  are t o  llxll 2 0.20. 

E f f o r t s  t o  improve upon t h e  r e su l t s  given i n  Table 2 by making t h e  

swi tch ing  func t ion  PWL and us ing  the  q u a l i t a t i v e  cri teria given i n  

Sec t ion  1114 t o  select s e v e r a l  s e t s  of parameter va lues  proved unsuc- 

c e s s f u l  because t h e  breakpoin ts  of t h e  PWL 0 were c l o s e  t o  o r  w i th in  

t h e  c o s t - f r e e  reg ion ,  implying t h a t  t h e  PWL swi tch ing  func t ion  was es- 

s e n t i a l l y  l i n e a r .  To show the u t i l i t y  of PWL swi tch ing  when t h e  cos t -  

f r e e  reg ion  i s  sma l l ,  a swi tch ing  func t ion  w a s  designed us ing  a set of 

f o u r  i n i t i a l  cond i t ions  having and a cos t - f r ee  reg ion  de- 

f i n e d  by llxll < 0.02. This switching func t ion ,  descr ibed  by t h e  para- 

m e t e r  array 

i 

lixoll 2 2.0 

- -  

X 

6.00 0.05 

X 

1.00 X 

(4.12) 

y i e l d s  t h e  response t i m e s  g iven i n  Table 3 and t h e  t r a n s i e n t  responses  

shown i n  Fig,  25b f o r  t h e  fou r  small i n i t i a l  cond i t ions .  
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TABLE 3. SMALL-DISTURBANCE RESPONSE TIMES FOR THE l/(s+0.5)(s2+ O.Ss+l) 
PLANT WITH PWL SWITCHING GIVEN BY EQ. (4.12) 

AND LINEAR SWITCHING GIVEN BY EQ. (4.11) 

Initial Condition Response Time (sec.) 

-0 0.0 
No. e e e Optimal PWL sw. Lin. Sw, 

5 0.11 -0.57 1.56 1.40 2.0 2.3 

6 -0.26 -0.39 1.81 1.95 3.7 4.0 

7 -0.99 0.74 0.79 1.99 3.7 4.8 

i 1.77 3.6 5.0 8 -1.16 1.66 , -0.85 I 

0 

Note: The optimal response time is to the origin; the sub-optimal 
times are to llxll 5 0.02. 

In order to substantiate further the conclusions stated at the 

beginning of this section, the PWL switching function (4.12) was used 

to control the large initial conditions (1,2,3, and 41, yielding the 

transient responses shown in Fig, 24b. Because the breakpoint is so 

small (p12 = 0.05) the PWL switching function is essentially a linear 

switching function with Q = (2, 3, 1) for all but small states. Since 

these effective linear switching coefficients are similar to those given 

by 4. (4.11) it i s  not surprising that the transient response of Figs. 
24a and b are similar. Finally, the small-disturbance responses of the 

linear switching function are given in Fig. 25a and the response times 

in Table 3 .  

T 

It is readily apparent that the design based on large initial condi- 

tions and a relatively large cost-free region has resulted in small 

transients which decay very slowly. If the performance corresponding 

to either switching function is not sufficiently close to the optimal, 

the parameter values given can be used to initiate an optimization 

procedure, 
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e ’  

0 

-0.5 

-1.0 

‘T 

li 

A DENOTES OPTIMAL 
RESPONSE TIME 

a. LINEAR SWITCHING 

b. PWL SWITCHING 

FIG. 25. SMALL-DISTURBANCE TRANSIENT RESPONSES FOR THE 
l / ( s  + 0 . 5 ) ( s 2 +  0.8s + 1) PLANT WITH LINEAR AND 
PIECEWISE-LINEAR SWITCHING 
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V. M)URTH-ORIIER EXAMPLE 

A. PIdoBLW STATEMENT 

The switching s u r f a c e s  designed f o r  a th i rd -o rde r  c o n t r o l  s y s t e m  i n  

t h e  previous chap te r  i l l u s t r a t e d  the use of t h e  des ign  guides  and sur- 

f a c e  searching  procedures and r a i sed  many of t h e  problems t o  be encoun- 

t e r e d  i n  t h e i r  a p p l i c a t i o n .  Since one of t h e  main reasons f o r  applying 

t h e  root- locus method and cons ider ing  t h e  dominant pe r iod ic  s o l u t i o n  i s  

to  reduce the  compl ica t ions  involved i n  c o n t r o l  des ign  f o r  h igher -order  

s y s t e m s ,  i t  i s  of i n t e r e s t  t o  show t h a t  t hese  des ign  methods are app l i -  

c a b l e  t o  a four th-order  (and presumably h igher -order )  p l a n t  w i th  rela- 

t i v e l y  l i t t l e  a d d i t i o n a l  complexity. 

Also,  i t  w i l l  indeed become apparent t h a t  t h e  des ign  of an opt imal  

PWL swi tch ing  func t ion  by s u r f a c e  searching  methods becomes more com-  

p l i c a t e d  as t h e  o r d e r  of t h e  system i n c r e a s e s ,  due mainly to  t h e  in-  

c r eased  d imens iona l i ty  of  t h e  performance s u r f a c e  t o  be searched.  I t  

w i l l  be shown, however, t h a t  t h e  q u a l i t a t i v e  des ign  methods are extremely 

h e l p f u l  i n  f i n d i n g  a simple sub-optimal PWL swi tch ing  func t ion  which 

y i e l d s  good performance over  a wide range of i n i t i a l  cond i t ions  which 

could  se rve  e i t h e r  as a f i n a l  design o r  as t h e  i n i t i a l  po in t  of a para- 

meter op t imiza t ion .  
2 2  The p l a n t  w i th  t r a n s f e r  funct ion l/s ( s  + 1) w i l l  be  considered 

i n  t h e  same manner as i n  t h e  previous chap te r  and i t  w i l l  be  found t h a t  

much of t h e  design process  w i l l  be an ex tens ion  of  work a l r eady  done f o r  

t he  th i rd-order  example. As mentioned i n  t h e  prev ious  c h a p t e r ,  t h e  

resu l t s  extend immediately t o  four th-order  systems wi th  r o o t s  i n  t h e  LHP. 

The p l a n t  and con tac to r  are descr ibed by t h e  d i f f e r e n t i a l  equat ion  

T . .. ... 
where e = (e,e,e,e ) and IuI = 1. - 
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The cost function given by Eq. (4.2) will be used, with the initial 
o *  0 0 states now being of the form (2 = (e170,0,0), where el = 1,2, ..., 8. 

The optimal response times corresponding to the initial conditions used 

to define J are obtained as in the third-order example of Chapter IV, 
i.e., by using the simple geometry of the trajectories in the canonical 

space and the uniqueness of the optimal control, and are given below. 

1 2 3 0 e 

T (sec.) 4.28 5.05 5.56 
0 

4 5 6 7 8 16 32 

5.97 6.30 6.60 6.87 7.12 8.73 11.38 

The cost-free region S is defined by the inequalities 

s =  

To simplify 

transformation 

- x=[ 

le1 + e21 < 0.10 
le1 - e21 < 0.10 

le3 + 0.5 e41 - < 0.10 
le3 - 0.5 e41 0.10 

i 
the visualization of the trajectories, the canonical 

0 1 0  0 -1 0 

1 0 1 0  0 Iy- - ; - e=( 1 - j x 7  - 

0 0 l/ 0 0 0  1; 

which will transform Eq. (5.1) into 
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is defined. Since the state-space is four-dimensional, the trajectories 

will be represented by their projections on the x x plane which are 

parabolas and on the 
1’ 2 

x3, x4 plane which are arcs of circles centered 

x3 = + u, x = 0 .  4 - 
switching function, expressed in the error variables, is 

at the points 

The linear 

where p4 has been set equal to unity. The three-dimensional linear 

switching-function parameter space is described by the vector f whose 

components are given by Eq. (3.5) with n = 4, i.e., 

2 ET = (w , 2<w, a). (5.3) 

By equating like powers of s in E q .  (3.4), the linear switching cqes- 

ficient vector e can be expressed in terms of the components of 4, as 

m 

(5.4) 

While e is easily found knowing 4 ,  the converse requires the solution 
of two cubic equations whose roots are not even unique when < > 1. 
this reason, and the fact that most of the relationships to be found are 

conveniently expressed in terms of its components, 

throughout most of the analysis, rather than e. When n < 3 and the 

state variables are e and its derivatives, f and the first (n-1) 

components of e are identical. 

For 

4 wi4l be used 

A single relationship is established between the components of E 
when one of the qualitative design guides is held constant, thereby 

defining a surface in the three-dimensional 

particular design guide is constant. For this example lines of constant 

value for the qualitative design guides will be plotted versus 

e2 for several fixed values of e3 . For a fifth-order plant several 

values could be assumed for the damping ratios of the two pairs of 

switching function zeros, yielding a two-dimensional plane in which the 

qualitative design guides could be plotted. 

f space upon which that 

el and 
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The requirement t h a t  t h e  switching func t ion  ze ros  l i e  i n  the  LHP can 

~ 2 P 3  > 1, 
I n  

be found by applying t h e  Routh-Hurwitz c r i t e r i o n  and i s  t h a t  

i n  add i t ion  t o  t h e  obvious requirement t h a t  t h e  p j  > 0 ,  j = 1 , 2 , 3 .  

terms of  t h e  f space,  t h e  requirement is  simply t h a t  t h e  4, > 0,  

i = 1 , 2 , 3 .  

B .  LINEAR SWITCHING DESIGN GUIDES FOR THE FOURTH-ORDER EXAMPLE 

The design guides  t o  be used i n  apply ing  t h e  t h r e e  l i n e a r  swi tch ing  

des ign  cr i ter ia  s t a t e d  i n  Sec t ion  IV-B are eva lua ted  i n  terms of 5 . 

-1 

FIG. 26. TYPICAL ROOT-LOCUS PLOT FOR THJ3 FOURTH-ORDER EXAMPLE 
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1. M a x i m u m  R e a l  P a r t  of t h e  Zeros 

When 0 <[< - 1, examination of t he  root- locus p l o t  i n  Fig.  26 re- 

v e a l s  t h a t  t he  m a x i m u m  real p a r t  of t he  ze ros  (denoted by 

given by 

- am) i s  

If 

w is as shown i n  F ig .  12b and 

r: > 1, t h e  m a x i m u m  real p a r t  of the t w o  zeros descr ibed  by C and - 

By us ing  Eq. (5.3) to  express  t he  t w o  equat ions  above i n  t e r m s  of 

t he  fol lowing set of r e l a t i o n s h i p s  de f in ing  a su r face  of cons t an t  

i n  the 5 
IV-B-1: 

5 , 
am 

space can be der ived i n  a manner analogous t o  t h a t  of Sec t ion  

(5.5) 

Each of the above r e l a t i o n s h i p s  descr ibes  a po r t ion  of a plane and the  

a ) which corresponds three p lanes  i n t e r s e c t  a t  t h e  point  ET = (am, am, 
to  < = 1 and a: = w and implies  t h a t  i n  t h e  s-plane a l l  three zeros  

are superimposed a t  the  po in t  s = - am. 

e3 
t o  Eq. (4.5) which w a s  ob ta ined  for the th i rd -o rde r  example. 

2 

I t  should be noted t h a t  i f  

is  d is regarded  i n  Eq. (5.5), r e l a t i o n s h i p s  (ii) and ( i i i )  reduce 

2. Angle of Departure of t he  Root Locus from the  Complex Poles  

The use of t h e  d e f i n i t i o n  of the  180 roo t  l o c i  and t h e  geometr ical  
0 

r e l a t i o n s h i p s  of Fig.  26 l e a d s  t o  t he  fol lowing express ion  for t he  

ang le  of depa r tu re  0: 
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(+ Q = 8 ,  + 0 + arc t a n  
2 

Since  8, and 8, of Eq. (5.6) are e x a c t l y  

and 8, of Eq. (4.6) i n  Sec t ion  IV-B-8, and 

)- 90 (5.6) 

t h e  same ang les  as el el and 5, are i d e n t i c a l  

i n  t h e  two cases, i t  fo l lows  t h a t  t h e  express ion  given i n  Eq. (4.7) is  

v a l i d  here,  namely, 

52 
41- 1 

8 ,  + 8 ,  = arc t a n  - . 

By s u b s t i t u t i n g  t h e  preceding 

w i t h  4,’ @ i s  given by 

= a r c  t a n  (&) + 

The equation f o r  t h e  s u r f a c e s  

equat ion  i n t o  Eq. (5.6) and r e p l a c i n g  a 

arc t a n  (e)- 90 . (5 .7)  

of cons t an t  Q, i n  t h e  f space i s  

Equation ( 5 . 8 )  can be considered as r e p r e s e n t i n g  a s t r a i g h t  l i n e  p a r a l l e l  

t o  t h e  el) 4 ,  plane  which i n t e r s e c t s  t h e  l i n e  el = 1, e2 = 0 and 

has  a slope which i s  dependent upon both  Q, and e3 . According t o  

Eq. ( 5 . 8 2 ,  t h e  su r face  upon which Q, = 90 i s  expressed by 0 

(5 .9)  

I t  should be noted t h a t  when 

implying t h a t  t h e  i n t e r s e c t i o n s  of t h e  s u r f a c e s  of cons t an t  0 w i t h  

t h e  el, 4 ,  plane must be  i d e n t i c a l  w i t h  t h e  l i n e s  of cons t an t  0 i n  

F ig .  13b, which were obta ined  for t h e  th i rd -o rde r  example. A s  4, + 00 

t h e  l i n e s  of cons t an t  (I p a r a l l e l  t o  t h e  E,, 4,  plane  r o t a t e  counter- 

clockwise through 90 . 

4,  = 0 Eq. (5.7) reduces t o  Eq. (4.71, 

0 
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3 .  S i z e  of t h e  Dominant Per iodic  So lu t ion  

The resu l t s  of analog s imula t ions  i n d i c a t e  t h a t  f o r  t he  p l an t  under 

cons ide ra t ion  t h e  dominant per iodic  s o l u t i o n  i s  as shown i n  F ig .  3 2 ,  i n  

Appendix A .  A cond i t ion  which the  l i n e a r  swi tch ing  func t ion  must s a t i s f y  

i n  o r d e r  f o r  t h i s  pe r iod ic  so lu t ion  t o  e x i s t  i s  der ived  and t h e  r e s u l t  

i s  expressed i n  terms of 

equal  t o  u n i t y  and p2 i s  expressed i n  terms of & by us ing  Eq. (5.41, 

p2 and p4 by Eq. ( A 6 ) .  I f  p4 i s  set 
, 
I , 
I 
~ then  Eq. (A6)  can be rearranged t o  y i e l d  I 

= -  - 1 ( 5  - n 
1 tan$ - $ 52 53 

(5.10) 

Equation (5.10) states t h a t  t h e  s i z e  of t h e  dominant pe r iod ic  s o l u t i o n  

i s  c o n s t a n t  i n  the  1. space along l i n e s  p a r a l l e l  t o  t he  6 
which i n t e r s e c t  t h e  l i n e  

s l o p e  of -1/t3 . When 9 = n/2 t he  s ize  of t h e  dominant pe r iod ic  

s o l u t i o n  is  i n f i n i t e  and E q .  (5 . lo )  reduces to  E q .  (5.93, which i s  t h e  

equat ion  f o r  t he  s u r f a c e  i n  t h e  - 5 space along which @ = 90 . For 

0 < I$ < a/2, t h e  s u r f a c e s  of cons tan t  p e r i o d i c  s o l u t i o n  s ize  are j u s t  

t h e  s u r f a c e  f o r  $ = n/2 s h i f t e d  ou t  a long  t h e  6, a x i s  by t h e  amount 

p lane  1’ 52 
5, = t a n  $ / ( tan  $ - $), k 2  = 0 and have a 

0 

$ / ( t an  $ - $1. 
A s  i n  t h e  th i rd-order  example, both t h e  nonl inear  and t h e  equ iva len t  

l i n e a r  systems g ive  t h e  same boundary i n  t h e  parameter space for which 

s t ab i l i t y - in - the - l a rge  can be i n f m r e d .  

C .  DESIGN OF THE OPTIMAL LINEAR SWITCHING FUNCTION FOR THE FOURTH- 
ORDER EXAMPLE 

The opt imal  l i n e a r  switching func t ion  f o r  t h e  p l a n t  under consider-  

a t i o n  and t h e  assumed c o s t  funct ion i s  found by searching  t h e  r e s u l t a n t  

performance s u r f a c e  t o  f i n d  those  va lues  of  

t h e  minimum c o s t .  

p rev ious  s e c t i o n  is used to  choose s e v e r a l  s t a r t i n g  p o i n t s  f o r  t h e  

random p e r t u r b a t i o n  search  process  which should l i e  reasonably c l o s e  t o  

t h e  opt imal  parameter va lues .  

pl, pa,  and p3 which y i e l d  

The q u a l i t a t i v e  des ign  information obta ined  i n  t h e  
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am = 0.50 and 0.707, * The l i n e s  of cons t an t  va lue  corresponding t o  
0 0 = 4.0 and are shown i n  F ig .  27 f o r  

By us ing  t h i s  in format ion  to  apply t h e  t h r e e  

q u a l i t a t i v e  l i n e a r  switching-function des ign  c r i t e r i a ,  i t  can be seen  

t h a t  t k , e  r eg ion  of i n t e r e s t  i n  t h e  three-dimensional 

l i k e l y  within a p a r t i o n  of t h a t  shown i n  Fig.  27. 

maximum value  of a w i l l  decrease  accord ingly ,  s i n c e  am 5 t,, and t h e  

s m a l l  d i s tu rbance  response of t h e  system i n  c h a t t e r  w i l l  have a longe r  

t i m e  cons tan t  than i f  Examination of Fig.  27c r e v e a l s  t h a t  

when 5, > 1.0 s t a b i l i t y  becomes a problem u n l e s s  am < 0.5 because 

t h e  l i n e s  of cons t an t  @ and cons t an t  

as 5, i s  increased .  However, t h e  choice  of am < 0.5 i s  de t r imen ta l  

t o  t h e  smd.1-disturbance response ,  j u s t  as when 

1e41m @ = 70 and 90 , and 

= 1 1 2 ,  ld2, and 1. E3 

5 space i s  most 

If E 3  < 0.5 t h e  

m 

5, _> 0.5. 

r o t a t e  counterclockwise Jeqlm 

6, i s  made s m a l l .  

P1, P3, P4, and P i n  Fig.  27 were s e l e c t e d  as 

s t a r t i n g  p i n t s  f o r  t h e  s e a r c h  of t h e  performance s u r f a c e  corresponding 

to  l i n e a r  swi tch ing .  am 2 0.5 

and 0 - > 70' and le41m E 4.0 i n  each case. While t h e  choice  of t h e s e  

va lues  i s  somewhat a r b i t r a r y ,  they appear t o  r e p r e s e n t  t h e  b e s t  compro- 

mise between l a rge -  and smal l -d is turbance  response which can be made w i t h  

t h i s  p l an t .  Ey t h e  same token, t h e  p o i n t s  denoted P2 and P5 i n  

Fig. 27b do no t  s a t i s f y  a l l  t h r e e  of t h e  above c r i t e r i a  and should ,  

according t o  the des ign  procedure,  y i e l d  h igher  va lues  of c o s t  than t h e  

o t h e r  po in t s  s e l e c t e d .  I n  Table 4 t h e  components of e and and 

t h e  va lues  of J corresponding t o  t h e s e  s i x  p o i n t s  are t abu la t ed .  

6 The ?ciir,ts denoted 

A l l  f e u r  p o i n t s  s a t i s f y  t h e  i n e q u a l i t i e s  

- 

* 
There is  no l i n e  for 

cause  Eq. (5 .59  r e q u i r e s  t h a t  
s t a n t  
t h e  ZSrCS. 

= 0.707 i n  Fig.  27a where E 3  = 0.5 be- 
% < E 3  i n  o r d e r  f o r  t h e  p lane  of con- 

k 3  t o  i n t e r s e c t  t h e  s u r f a c e  of cons tan t  minimum real  p a r t  of 
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TABLE 4 .  VALUES OF 5 ,  Q AND J M)R POINTS I N  FIG. 27 
LABLED P , ,  i = 1, . . . ,  6 

p1 
0.41 

0.62 

0.53 

0.45 

0.35 

0.50 

- 
i p2 

1.57 

1 . 2 2  

1.46 

1 .69  

1 .91  

1.50 

1 

2 .  

3 

4 

5 

6 - 

5 1  52 

0.82 1.50 

0.87 0.50 

0.75 1 .oo 
0.63 1 .50  

0.50 2.00 

0.50 1.00 

5 3  

0.50 

0.707 

0.707 

0.707 

0.707 

1 .00  

p3 
2.00 

1 .21  

1 .71  

2.21 

2.71 

2.00 

p4 

1.00 

1 .oo 
1 .oo 
1 .oo 
1.00 

1.00 

J 

2.20 

2.35 

1 .45  

2.30 

3.30 

2.20 

Examination of Table 4 i n d i c a t e s  t h a t ,  of t h e  f o u r  p o i n t s  s e l e c t e d  

on t h e  b a s i s  of t h e  q u a l i t a t i v e  des ign  procedure (P1’ P3’ P4’ and P6) 9 

a l l  gave f i n i t e  va lues  for J ,  i . e . ,  t h e  response w a s  s t a b l e  f o r  a l l  

e i g h t  i n i t i a l  cond i t ions  used, and one (P ) y ie lded  a va lue  of c o s t  on ly  

45 percent above the  op t ima l .  In  a d d i t i o n ,  of t h e  two p o i n t s  s e l e c t e d  

as being less s a t i s f a c t o r y  than  these  f o u r ,  one (P ) y ie lded  a va lue  

of J comparable t o  t h a t  ob ta ined  w i t h  t h r e e  of them and t h e  o t h e r  

(P5> y ie lded  a s i g n i f i c a n t l y  h igher  c o s t .  Furthermore, s e v e r a l  va lues  

of 5 which were chosen randomly r a t h e r  than on t h e  b a s i s  of t h e  q u a l i -  

t a t i v e  design c r i t e r i a  e i t h e r  y i e lded  h igh  va lues  of c o s t  ( s a y  J > 3.0) 

or r e s u l t e d  i n  one o r  more uns t ab le  t r a j e c t o r i e s .  

3 

2 

- 

The optimal l i n e a r  swi tch ing  func t ion  w a s  ob ta ined  by s t a r t i n g  t h e  

three-parameter random sea rch  procedure descr ibed  i n  Sec t ion  11-D a t  

t hose  po in t s  i n  t h e  Q space corresponding t o  p o i n t s  P3, P4, and P 

i n  t h e  k space .  Of two sea rches  i n i t i a t e d  from p o i n t s  P3 and P4 , 
one found t h e  abso lu te  minimum and one found a r e l a t i v e  minimum. A 

s i n g l e  search  s t a r t e d  a t  p o i n t  

minimum which w a s  a t  t h e  p o i n t  

* 
6 

P6 
6 T  = (0.72, 1.83, 1 . 8 6 ,  1.00)** and 

succeeded i n  reaching  t h e  a b s o l u t e  

* 
Because of t h e  proximity i n  t h e  space of p o i n t s  P and P6, 

on ly  P6 was used as a s t a r t i n g  p o i n t  f o r  t h e  sea rch  proceaure.  

** A T  

= 0.56, @ = 54O, and le4Im = 2.7.  
The value o f  i s  given by - 5 = (1.02, 1 .15 ,  0.711, f o r  which 

am 

-80- 



corresponded to a minimum cost of I = 1.19. The fact that was the 

optimal linear switching function for the specific cost function used 

was verified by restarting the search procedure at 

with a relatively large value for the standard deviation of the random 
parameter perturbations, without improving upon the cost. The step- 

function responses obtained with the optimal linear switching function 

are not shown, but they are very similar to those of Fig. 29 which were 

obtained with PWL switching. Because the corresponding values of cost 

differ by only 0.07, this similarity is not surprising. 

6 several times 

Although the step-function response of the optimal linear switching 

function is reasonably close to the optimal for 

of stability is very limited, i.e., leo/ > 9 is unstable. Therefore, 

in order to increase the region of stability and to possibly lower the 

minimum cost attainable, the use of FK, switching w i l l  be c~nsidered. 

leo] 5 8, the region 

D. DESIGN OF A PWL SWITCHING FUNCTION M)R THE FOURTH-ORDER EXAMPLE 

The value of the four-component vector a@/?$ in the - 6 space is 

used in conjunction with the maximum magnitude attained by the four 

state-variables e during the optimal linear switching responses in 

order to select the switching function component(s) to be made FWL. The 

maximum magnitudes attained by e e e and e were observed to be 

8.0, 3.0, 1.5, and 2.4 ,  respectively. These values are used in guiding 

the selection of the breakpoint(s). The vector a @ / a ~  is evaluated by 
the straightforward application of Eq. (3.12) to the expression for 

@(&I given by Eq. ( 5 . 7 ) .  After a considerable amount of algebra it is 

found that 

i 

1’ 2’ 3’ 4 

L 

f 
J 
7 

(5. llb) 
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and ( 5 .  l l d )  

The i n t e r s e c t i o n s  of t h e  s u r f a c e s  of cons t an t  &/a& wi th  t h e  p lane  

= 1/12 are shown i n  F ig .  28. 53 
Since e v a r i e s  over a s u b s t a n t i a l l y  wider range than do t h e  o t h e r  1 

components o f  e ,  i t  i s  n a t u r a l  t o  cons ide r  making a1 PWL. I f  a s i n g l e  

breakpoint i s  used i n i t i a l l y ,  t h e  parameter a r ray  {p )  has f i v e  un- 

determined components and appears  as 

- 

p12 

X 

X 

X 

X 

X 

(5.12) 

where t h e  x ' s  denote elements which are undefined f o r  t h i s  p a r t i c u l a r  

choice  of switching func t ion .  Examination of Eq. (5.11a) shows t h a t  

b$/hpl = 0 along t h e  s u r f a c e  def ined  by 5 = - - (El - 1) which, 

according t o  E q .  (5.9),  i s  t h e  same s u r f a c e  a long  w h c h  

f o r e ,  i f  any improvement i n  t h e  l a r g e  d i s tu rbance  response i s  t o  be 

ob ta ined  by making ul be PWL, i t  i s  necessary  t h a t  t h e  va lue  of 0 

corresponding t o  t h e  l i n e a r  p o r t i o n  of t h e  swi tch ing  func t ion  be some- 

what less than 90'. Furthermore, s i n c e  &/ap, < 0 when 0 < 90°, 

t h e  equiva len t  s lope  of 

o r d e r  t o  r a i s e  t h e  e f f e c t i v e  va lue  of ($ , i . e . ,  

1 

0 2 5 
@ = 90 . There- 

a1 must be decreased beyond t h e  breakpoin t  i n  

p13 < p11' 
The search of t h e  performance s u r f a c e  corresponding t o  t h e  a r r a y  

(5.12) was c a r r i e d  o u t  on t h e  hybrid computer by f i x i n g  t h e  breakpoin t  

and the corresponding change of s lope  (pis - pll) and opt imiz ing  
p12 
t h e  t h r e e  l i n e a r  swi tch ing  parameters Pll' P21' and P31 w i t h  t h e  
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and P31 were se t  a t  t h e  11’ P21’ random search procedure.  I n i t i a l l y  p 
values  y ie ld ing  the  opt imal  l i n e a r  swi tch ing  func t ion  and the  PWL para- 

meters were chosen t o  be p12 = 6 . 0  and (p13 - pll) = - 0.25 i n  o r d e r  

t o  make the depa r tu re  from the  optimal l i n e a r  swi tch ing  func t ion  s m a l l .  

A f t e r  the  t h r e e  l i n e a r  switching parameters  were optimized f o r  s e v e r a l  

va lues  of (p13 - pll) t he  breakpoint  w a s  lowered and t h e  process  re- 

pea ted ,  but w i th  the  l i n e a r  switching parameters  s t a r t i n g  from t h e i r  

c u r r e n t  optimum values  us ing  t h e  PWL swi tch ing  func t ion .  

minimum c o s t s  of J = 1 .17 ,  1 .12 ,  1 .13,  and 1.18 were obta ined  wi th  

p12 = 6.0,  5 . 0 ,  4 . 0 ,  and 3.0,  r e s p e c t i v e l y .  The opt imal  parameter 

va lues  y i e ld ing  J = 1.12  were given by t h e  a r ray  

In t h i s  manner, 

* 

{ P I  = (5.13) 

(1.00 X 

where the x’s  denote  undefined elements ,  and the  corresponding s t ep -  

func t ion  responses  are shown i n  Fig.  29. 
0 0  An examination of t r a j e c t o r i e s  wi th  non-zero va lues  f o r  e e 2’  3 ’  

0 and 

t h e  region of s t a b i l i t y  i n  the  s ta te -space  i s  seve re ly  l i m i t e d .  For 

e4 = 0 ,  the  maximum value  of example, when e; = 
0 

response i s  s t a b l e  diminishes  from 1.60 when e = 0 t o  only 0.45 when 1 
e = 10.  I n  Appendix A i t  i s  shown t h a t  t h e  form of the  equat ion  for 

t h e  locus  of poss ib l e  switching p o i n t s  f o r  t h e  dominant pe r iod ic  s o l u t i o n  
2 i s  i d e n t i c a l  t o  t h a t  f o r  t h e  l/s(s + 1) p l a n t ,  bu t  w i th  t h e  e and 

e coord ina tes  s u b s t i t u t e d  f o r  t h e  el and e3 coord ina te s ,  res- 

pec t ive ly ,  and wi th  e 

e4 r e v e a l s  t h a t ,  as wi th  the  opt imal  l i n e a r  switching f u n c t i o n ,  

0 0 e f o r  which t h e  3 

0 

1 

2 

4 
= e3 = 0. The switching s u r f a c e  corresponding 

1 

* 
The minimum value  of J a t t a i n a b l e  w i t h  l i n e a r  switching w a s  

I = 1.19.  
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t o  t he  a r r ay  (5.13) i n t e r s e c t s  t h e  

e = -2.18e and t h e  necessary  cond i t ion  f o r  t h e  e x i s t e n c e  of t h e  

dominant pe r iod ic  s o l u t i o n  i s  s a t i s f i e d .  To make i t  imposs ib le  f o r  

t h i s  pe r iod ic  s o l u t i o n  t o  e x i s t  O4 
p42 = 1 . 7  and w i t h  p = 2.40, y i e l d i n g  an i n t e r s e c t i o n  of t h e  switch- 

i n g  sur face  and t h e  e e p lane  which no longer  i n t e r s e c t s  t h e  locus  

of poss ib l e  p e r i o d i c  s o l u t i o n  swi tch ing  p o i n t s ,  thereby making i t  i m -  

p o s s i b l e  f o r  t h e  dominant p e r i o d i c  s o l u t i o n  t o  e x i s t .  Making 

a f f e c t e d  seve ra l  of t h e  t r a j e c t o r i e s  used t o  measure t h e  c o s t  correspond- 

i n g  t o  the array (5 .13) .  Therefore ,  t h e  t h r e e  l i n e a r  swi tch ing  para- 

meters were ad jus t ed  s l i g h t l y ,  us ing  t h e  random sea rch  procedure,  t o  y ie ld  

t h e  a r ray  

e2 ,  e4 p lane  a long  t h e  l i n e  

4 2 

w a s  made PWL w i t h  a breakpoin t  a t  

43 

2 '  4 

PWL a4 

0.96 

X 

( P I  = (5.14) 

(1.00 1 .70  2.40) 

f o r  which J = 1.15 .  I t  w a s  v e r i f i e d  on t h e  analog computer t h a t  t h e  

o r i g i n  was asymptot ica l ly  s t a b l e  f o r  a l l  i n i t i a l  c o n d i t i o n s  which could  

be s imula ted ,  namely Ile/l < 100. 

One of t h e  primary reasons  f o r  u s ing  a PWL swi tch ing  func t ion  as 

opposed t o  a l i n e a r  swi tch ing  func t ion  i s  t o  extend t h e  range of i n i t i a l  

cond i t ions  f o r  which s a t i s f a c t o r y  performance can be achieved. To i l l u s -  

t r a t e  t h e  use fu lness  of a PWL swi tch ing  func t ion  when t h e  s tep- func t ion  

magnitude var ies  over  t h e  range 1 - < leoI < 32, t h e  swi tch ing  func t ion  

parameters 

0.70 8.00 0.50 16.00 0:05\ 

1 .73  X X X 

(5.15) I 1 . 6 5  X X X X 
( P I  = 

(1.00 X X X 
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were obta ined  by observing t h e  t r a j e c t o r i e s  w i t h  t h e  analog computer i n  

t h e  r e p e t i t i v e  mode and a d j u s t i n g  the parameters manually. 

sponding t r a n s i e n t  responses  are shown i n  Fig.  30 f o r  s eve ra l  representa-  

t i v e  va lues  of e . As such,  t h i s  performance r e p r e s e n t s  an i n i t i a l  

parameter set from which an opt imiza t ion  could be s t a r t e d  i f  the  per- 

formance is  no t  adequate as given.  

The cor re-  

0 

It has  been poss ib l e  t o  o b t a i n  an opt imal  PWL swi tch ing  func t ion  

f o r  a dominant four th-order  p l a n t .  However, i t  should be emphasized 

t h a t  the  task o f  searching  a high-dimensionality s u r f a c e ,  w h i l e  pre- 

s e n t i n g  no formal d i f f i c u l t y ,  may r ep resen t  a s u b s t a n t i a l  cha l lenge  t o  

t h e  des igne r .  Therefore ,  when t h e  p l a n t  is t r u l y  of f i f t h -  o r  higher- 

o r d e r ,  i . e . ,  i s  not  adequately represented  by a p l a n t  of lower-order ,  

i t  is  f e l t  t h a t  c a r e f u l  cons idera t ion  must be given t o  t h e  choice  of 

L l l e  bUlfclLT; ----- --- 3 G a s b r r r * . 6  ----.-bin= nmondiirp p -..1..---- to he employed and, as previous ly  men- 

t i o n e d ,  t h e  methods descr ibed  by Kushner [Ref .  121 and Brown [Ref.  131 

merit cons ide ra t ion ,  provided that  s u f f i c i e n t  d i g i t a l  computer capac i ty  

is  a v a i l a b l e .  
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VI. CONCLUSION 

A .  SUMMARY 

The problem considered in this dissertation is the possible use o f  

PWL switching functions for satisfying the minimum-time criterion and 

for that class of control systems which can be represented by a linear, 

constant parameter plant whose transfer function has only poles, a 

single controller which is an ideal contactor, and an input function 

which is equivalent to initial conditions on the state-variables. 

Furthermore, it has been assumed that all state-variables are observable 

and that no random effects exist. 

In Chapter I1 a performance criterion is defined in terms of the 

weighted response times for an unspecified number of initial conditions. 

The effect of the number of initial conditions upon the resulting per- 

formance surface is investigated in detail for the l/s2 plant. It is 

shown qualitatively that as more initial conditions are used in the 

definition of the cost the performance surface becomes more amenable to 

a surface searching process in the sense that the number and size of 

relative minima are reduced, fluctuations in the surface gradient are 

lessened, and the region near the absolute minimum becomes more nearly 

parabolic. A l s o ,  it is shown, again for the second-order example, that 

the minimum cost obtainable i s  relatively insensitive to the locations of 

the breakpoints of the PWL function provided that the corresponding 

slopes are adjusted to their optimum values. Two surface searching 

methods used are presented and the results obtained with the l/s 

plant are described. 

2 

In Chapter 111 a qualitative method based upon root-locus techniques 

and the existence of certain periodic solutions is given for designing 

sub-optimal linear switching functions. It is shown how the properties 

of the root loci and the periodic solution can be used to provide 

qualitative information as to which of the linear switching function 

components should be made FWL functions and in what directions the 

slopes should be changed. A second-order plant with unstable oscillatory 

poles is used to illustrate the qualitative design procedure for both 

linear and PWL switching functions. 
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The design of an opt imal  PWL switching func t ion  f o r  the  th i rd-order  
2 p l a n t  l/s(s + 1) s u b j e c t  t o  s tep-funct ion i n p u t s  i s  c a r r i e d  o u t  i n  

d e t a i l  i n  Chapter I V .  I t  is shown t h a t  t h e  r e s u l t s  of t h e  q u a l i t a t i v e  

des ign  procedure are i n  good agreement wi th  t h e  measured l i n e a r  switch- 

i ng  performance s u r f a c e  corresponding t o  t h e  assumed c o s t  func t ion .  By 

us ing  t h e  root- locus information t o  select a l i n e a r  switching-function 

component t o  be made PWL and then us ing  the random search procedure to  

opt imize  t h e  parameter va lues ,  a PWL switching func t ion  having a s i n g l e  

breakpoint  i s  found which y i e l d s  close-to-optimal c o s t .  By cons ide r ing  

t h e  e x i s t e n c e  of t h e  dominant pe r iod ic  s o l u t i o n ,  i t  is  shown how t h e  

PWL swi tch ing  func t ion  designed on t h e  b a s i s  of c o s t  a lone  can be modi- 

f i e d  so t h a t  the  effects of parameter v a r i a t i o n s  upon the system sta- 

b i l i t y  are s u b s t a n t i a l l y  reduced and the  reg ion  of s t a b i l i t y  i n  t he  

state-space is iricreased by a ?ac to r  of a t  least  one hundred. The 
2 

t h i rd -o rde r  p l an t  1/(s i- 0 . 5 ) ( s  + 0.8s + 1) i s  considered b r i e f l y  t o  

show t h a t  there is  no d i f f i c u l t y  i n  applying t h e  des ign  methods t o  p l a n t s  

w i t h  well-damped poles .  I t  i s  found t h a t ,  while  l i n e a r  swi tch ing  g ives  

c lose- to-opt imal  responses  f o r  l a r g e  i n i t i a l  cond i t ions  f o r  such w e l l -  

damped p l a n t s ,  PWL switching g ives  c lose- to-opt imal  responses  f o r  both 

l a r g e  and small i n i t i a l  condi t ions .  I t  is i n d i c a t e d  i n  Chapter V that  

there are no t h e o r e t i c a l  l i m i t s  t o  t h e  o r d e r  of the p l a n t  which can  be 

t r e a t e d  by t h e  proposed methods, and t h i s  is  i l l u s t r a t e d  by des igning  

a PWL switching func t ion  f o r  t h e  p l an t  l / s  ( s  + 1). However, i t  is  

evident  that  the  p r a c t i c a l  a spec t s  of c a r r y i n g  o u t  t h e  performance suf -  

f a c e  sea rch  do become more complex as the  p l a n t  o r d e r  i nc reases .  

2 2  

T h i s  i n v e s t i g a t i o n  has provided t h r e e  c o n t r i b u t i o n s  t o  t h e  f i e l d  of  

c o n t a c t o r  c o n t r o l  system technology. F i r s t ,  i t  has been demonstrated 

q u a n t i t a t i v e l y  t h a t  r e l a t i v e l y  simple FWL switching func t ions  which,  by 

t h e i r  very n a t u r e ,  are e a s i l y  implemented can g ive  very close-to-minimum- 

t i m e  responses  f o r  a v a r i e t y  of p l a n t s  and i n i t i a l  cond i t ions .  I n  

a d d i t i o n ,  FWL switching func t ions  can be used to  en la rge  g r e a t l y  the  

reg ion  of s t a b i l i t y  i n  t h e  s ta te -space  f o r  those  s y s t e m s  w i t h  l i n e a r  

or  PWL switching having f i n i t e  s t a b l e  reg ions .  
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Second, a procedure has been given for qualitatively designing linear 

switching functions for plants of arbitrary order and for determining 

which switching function components should be made PWL and how the slopes 

should be changed in order to improve the performance over that attainable 

with linear switching. 

Finally, a procedure has been presented for the synthesis of PWL 

switching functions by formulating the problem as the search of a per- 

formance surface and by providing methods for defining a performance 

surface which will be amenable to standard searching techniques, for 

initiating the search, and for reducing the dimensionality of the surface. 

The principal advantages of PWL switching functions and of the pro- 

posed methods are: 

1. PWL switching functions of the type considered here are extreme- 
ly simple to implement and are suitable for use in adaptive 
systems. 

2. The design procedures are not limited theoretically by the 
order of the plant. 

3 .  No a priori assumptions are made regarding the number of 
switching points or  the shape of the optimal switching sur- 
face, so presumably PWL switching and the design methods are 
applicable to a wide variety of plants and initial conditions. 

4. A quantitative performance criterion is used for the design 
of optimal linear and PWL switching functions. 

Likewise, the following practical considerations should be pointed out: 

1. If the optimization procedure is performed entirely on a digital 
computer, as opposed to using a hybrid system, a considerable 
amount of computation time is required, primarily f o r  the inte- 
gration of differential equations. 

2. As the order of the plant and, in turn, the dimensionality of 
the performance surface increase, the task of finding the op- 
timal parameter values presents an increasingly complex surface 
searching problem. 
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Although the usefulness of PWL switching and of the design procedures 

presented must be demonstrated with specific plants, initial conditions, 

and cost functions, it is possible to draw several general conclusions 

regarding their applicability on the basis of the results presented here. 

The design procedures developed here appear to be applicable to plants 

having their poles anywhere in the s-plane except possibly on or close 

to the positive real axis. Higdon [Ref. 211 has investigated plants 

with unstable real roots from a different point of view and has shown 

that PWL switching surfaces are of considerable utility in that case. 

In general, PWL switching provides improved performance over that attain- 

able with linear switching when the plant poles are not well-damped and 

when the initial conditions being considered do not have approximately 

co-planar optimal switching points. When the plant poles are well-damped 

the cost-free region must be relatively small in ~ r d e r  to urirract DWL 

switching. 

It is felt that PWL switching is useful in an engineering sense fo r  

a larger variety of plants and initial conditions than any single one of 

the quasi-optimal design methods discussed in Section I-B. Furthermore, 

it is apparent that the simplicity of the resulting system makes PWL 

switching very attractive for practical applications. 

B. SUGGESTIONS FOR FURTHER INVESTIGATION 

Since the range of applicability of the class of PWL switching func- 

tions considered here can be determined only by direct verification, it 

would be useful to consider examples for a wider variety of plants and 

initial conditions than was possible to evaluate here, and, in particular, 

for unstable plants. Also, methods to reduce the complexity of the sur- 

face searching problem when the order of the plant is high are worthy of 

consideration. 

It seems likely that a systematic method of using some of the initial 

conditions to determine the linear portion of the switching surface and 

then using the remainder to determine the FWL parameters could be devised. 

The problems of selecting which initial conditions are to be used in 

determining the respective switching function parameters and of insuring 
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t h a t  t h e  t r a j e c t o r i e s  f o r  l a r g e  d i s tu rbances  can be made s t a b l e  once t h e  

l i n e a r  por t ion  of t he  switching func t ion  is  f i x e d  do not  appear t o  be 

t r i v i a l .  

The ques t ions  r a i s e d  by t h e  observed in f luence  of the  so-ca l led  

dominant pe r iod ic  s o l u t i o n  upon the  reg ion  of s t a b i l i t y  i n  a three-  or 

higher-dimensional s ta te -space  should be answered. In  p a r t i c u l a r ,  t h e  

r e l a t i o n s h i p  between t h e  observed dominant p e r i o d i c  s o l u t i o n  and the  

s t a b i l i t y  boundary i n  t h e  n-dimensional s t a t e - space ,  and the  ex i s t ence  

and meaning of o t h e r  pe r iod ic  s o l u t i o n s  are t o p i c s  whose understanding 

may very w e l l  l e a d  t o  use fu l  r e s u l t s  i n  an area which has  not  rece ived  

a g r e a t  dea l  of a t t e n t i o n  t o  d a t e .  

F i n a l l y ,  t h e  ever-present  ques t ion  of e q u i v a l e n t - l i n e a r i z a t i o n  is  i n  

need of r igorous  r e s o l u t i o n .  Although Aizerman's con jec tu re  i s  i n v a l i d  

i n  a number of cases, i t  i s  l i k e l y  t h a t  u se fu l  r e s u l t s  could be obta ined  

by r e s t r i c t i n g  the  n o n l i n e a r i t y  t o  being an i d e a l  con tac to r  r a t h e r  than 

al lowing it  t o  have the  very genera l  na tu re  f o r  which t h e  con jec tu re  w a s  

made. 
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APPENDIX A. A CONDITION NECESSARY FOR THE EXISTENCE OF "HE 
DOMINANT PERIODIC SOLUTION FOR TKE l/s(s2+ 1) 
AND l/s (s + 1) PLANTS 2 2  

In this appendix a set of conditions necessary for the existence of 

the observed dominant periodic solution will be given for the plants 

considered in Chapters IV and V. No attempt will be made to consider 

sufficient conditions or other types of periodic solutions. 

1. l/s(s2+ 1) PLANT 

A typical dominant periodic solution which has been observed for this 

plant is as shown by Fig. 31. Examination of the projections of the 

trajectory indicate that the coordinates of the two switching points 

N and N in the canonical space are given by 1 2 

By using the transformation of Eq. (4.3b), the coordinates of the switch- 

ing points in the error space, expressed in terms of the quarter-period 

J I p  are found to be 

T e = + (@ - tan $, 0, tan @) . - - 

Since the two points N1 and N are to be switching points it is 2 
necessary that the switching function be zero at these points if the 

dominant periodic solution is to exist. If a linear switching function 

is used and 

the moment, it is seen that at the points N1 and N2 

p 3 ,  the coefficient of e3, is not set equal to unity for 

Using Eq. (Al) to obtain the coordinates of N1 and N2, it follows 

that the condition necessary fo'r the existence of the dominant periodic 

solution is that a solution exist to the equation 
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a. x,,x3 PLANE b. xZ, ~3 PLANE 

2 
FIG. 31. TYPICAL DOMINANT PERIODIC SOLUTION FOR THE l/s(s +1) 

PLANT 

T x2 

a. xI,x2PLANE 

2 2  FIG. 32. TYPICAL DOMINANT PERIODIC SOLUTION FOR THE l / S  ( S  + 1) 
PLANT 
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Since  both p1 and p3 must be p o s i t i v e  t o  i n s u r e  s t a b l e  chat ter ,  

Eq. (A3) can have a s o l u t i o n  i f  and only  i f  

I t  i s  also of i n t e r e s t  to  consider  a g raph ica l  d e r i v a t i o n  of t h e  

preceding i n e q u a l i t y .  If the parameter Jr is  e l imina ted  from Eq. ( A l ) ,  

a locus  of p o i n t s  l y i n g  i n  t h e  e e plane is  obta ined ,  obeying the  1' 3 
equat ion  

(A4 3 '  "2 = O *  
= - e3 -!- arc t..n e 

el 

Thi s  l i n e  i n  the  e e p lane ,  which i s  p l o t t e d  i n  F ig .  33, rep- 1' 3 
r e s e n t s  a l l  p o i n t s  i n  t h e  s ta te-space which can be swi tch ing  p o i n t s  f o r  

t h e  p a r t i c u l a r  pe r iod ic  s o l u t i o n  depic ted  i n  F ig .  31. For l a r g e  va lues  

of le31 
l i n e s  e = -e + n/2 sgn e3 which have a s lope  of -1 i n  t h e  e e 

p lane .  The i n t e r s e c t i o n  of t h e  l i n e a r  switching plane descr ibed  by 

Eq. (A2) w i t h  the  el, e3 p lane  is the  l i n e  

the  locus  of p o s s i b l e  switching p o i n t s  i s  asymptotic to  the 

1 3 1' 3 

- 
3 '  e p1 

p3 e3 = - (A5 1 

If t h e  s lope  of t h i s  l i n e  is  g r e a t e r  than  -1, i .e . ,  p1 < p3, there 

can be no non- t r iv i a l  i n t e r s e c t i o n  between the l i n e  desc r ibed  by E q .  (A51 
and t h e  locus  of p o s s i b l e  switching p o i n t s  descr ibed  by Eq. (A4). 

t y p i c a l  switching su r face  i n t e r s e c t i o n s  are shown i n  Fig.  33. Line A 

i s  t h e  switching p lane  i n t e r s e c t i o n  corresponding to 

as v e r i f i e d  by analog s imula t ion ,  produces the dominant p e r i o d i c  solu-  

t i o n  shown i n  Fig.  31 when p 
Line B corresponds t o  

p e r i o d i c  s o l u t i o n  cannot e x i s t ,  as  v e r i f i e d  by analog s imula t ion .  

Two 

p1/p3 = 3.2 and,  

is  chosen i n  t h e  range 0.5 < p2 < 3. 2 

p1/p3 = 0.5 and i n d i c a t e s  t h a t  t he  dominant 
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LOCUS OF POSSIBLE 
PERIODIC SOLUTION / 
SWITCHING POINTS 
(ez = 0 )  

FIG, 33.  LOCUS OF POSSIBLE PERIODIC SOLUTION SWITCHING POINTS 
AND INTERSECTIONS OF TWO LINEAR SWITCHING SURFACES 
WITH THE el, e PLANE, l/s(s2+ 1) PLANT 3 

-96- 



2 2  2. l/s ( s  + 1) PLANT 

The observed dominant periodic solution for this plant is of the 

form shown by Fig. 32. By inspection it can be seen that the coordinates 

of the two switching points N1 and N2 in the canonical space are 

given by 

0 < + < n/2. T x = + (0, 9, 0, tan +I - - 

By application of the transformation of Eq. (5.2b) the coordinates of 

N1 and N2 in the error space are found to be 

e T = + (0, +-tan ~ r ,  0, tan $1 . 
- - 

If the two points given by this equation are to lie on the linear switch- 

ing surface, it is necessary that 

0 < Jr < n/2. p2 
3 

tan + 
Jr p2- p4 

Therefore, the condition necessary for the existence of the dominant 

periodic solution is 

As in the third-order example of the previous section, this in- 

equality can be shown graphically by eliminating Jr from Eq. (A61 to 

obtain the equation for the locus of possible periodic solution switch- 

ing points: 

el = e3 = 0. 4 ’  e = - e + arc tan e 2 4 
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Because the form of the preceding equation is identical to that of Eq. 

( A 4 ) ,  it follows that the locus Of possible periodic solution switching 

points is exactly as shown in Fig. 33, except with e and e sub- 2 4 
stituted for e and e respectively, and with e - - e3 = 0. 1 3’ 1 

-9 8- 



APPENDIX B. A TWO-PARAMETER GRADIENT SEARCH P W E S S  

ing 
the 
th m 

and 

two 

ing 

To illustrate the manner in which the gradient surface searching 

procedure mentioned in Section 11-E is accomplished, consider the follow- 

sketch where the points corresponding to 

cost J in the two-dimensional 

iteration cycle are shown. 
R1' R2 

R2 t -. 

possible measurements of 

parameter space during the 

1 A c 

R1 

Point 1 denotes the value of 

the corresponding value of the cost function is 

components of the approximate surface gradient are measured accord- 

to the relationships 

- R at the start of the mth iteration 

J1. First, the 

1 J3 - J 
3J - 3 s" -aR,- sm 

and J2 - J1 
E 

aJ 
Y 
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where J2 and J3 denote t h e  va lues  of  J measured a t  p o i n t s  2 and 

3 r e spec t ive ly ;  t he  parameter 6m 

made i n  the  components of 

g rad ien t  a t  po in t  1. The va lue  o f  I R corresponding t o  p o i n t  4 i s  then 

computed us ing  Eq. (2.6) and t h e  c o s t  J4 can then  be measured. 

is t h e  magnitude of t h e  p e r t u r b a t i o n  

- Rm i n  o r d e r  t o  measure t h e  approximate 

I f  J4 5 J1, t h e  change i n  E prev ious ly  computed by us ing  Eq. (2.6) 

i s  then doubled, y i e l d i n g  po in t  5, and J5 i s  measured. I f  J5 J4, 

and t h e  p rocess  is  r epea ted  to  f i n d  Rm+2 . p o i n t  5 i s  taken as 

I f  

Rm+ 1 
- - 

J4 > J1, t h e  computed change i n  - R is  halved, y i e l d i n g  p o i n t  6 and 

and t h e  Rm+l  
t h e  corresponding J6. I f  J6 5 Jl, p o i n t  6 i s  taken  as - 
process  is  repea ted .  By us ing  t h i s  procedure,  t h e  e f f e c t i v e  va lue  of 

t h e  feedback ga in  y can vary from one-half t o  twice i t s  nominal v a l u e ,  

w i t h  only a 25 percent  i nc rease  i n  t h e  number of p o i n t s  a t  which J 

must be measured. 

I f  both J4 and J6 are g r e a t e r  than  J1, e i t h e r  t h e  measurement 

of t h e  approximate g rad ien t  has fu rn i shed  mis leading  informat ion  or t h e  

va lue  of 

a s i g n i f i c a n t  f a c t o r .  Therefore ,  i t  would seem reasonable  t o  reduce 

y and 6 and repeat t h e  process .  However, be fo re  doing t h i s  t h e  va lues  

of c o s t  used i n  measuring t h e  g r a d i e n t ,  namely J2 and J3 are com- 

pared w i t h  J1 and, i f  e i t h e r  one i s  less than or equal  t o  J l ,  t h e  

T~ w a s  t oo  h igh ,  provided, of cour se ,  t h a t  n o i s e  has no t  been 

Rm+ 1 . I f  n e i t h e r  of t h e s e  tes ts  

provides  a lower va lue  of c o s t ,  then J7 and J8 are measured and com- 

pared t o  Jle F i n a l l y ,  i f  both J7 and J8 exceed J1, t h e  va lues  of 

y and 6 a r e  halved and t h e  process  r e p e a t e d ,  aga in  s t a r t i n g  w i t h  t h e  

measurement of t h e  approximate g rad ien t  a t  po in t  1. The sea rch  process  

i s  stopped when 6 has reached a c e r t a i n  a r b i t r a r y  lower bound. 

ccrresponding va lue  of - R i s  taken as - 

I f  the t r a j e c t o r y  corresponding t o  any one of t h e  K i n i t i a l  con- 

d i t i o n s  used i n  measuring J i s  uns t ab le  or has a s e t t l i n g  t i m e  which 

exceeds t h e  l i m i t s  f o r  which t h e  analog computer i s  s c a l e d ,  t h e  va lue  of 

J a t  t h a t  p a r t i c u l a r  - R cannot be determined, i . e . ,  t h e  performance 

s u r f a c e  does not  e x i s t  t h e r e .  The procedure followed i n  t h i s  event 

depends upon the  p a r t i c u l a r  po in t  i n  t h e  sea rch  p rocess  a t  which t h e  

i n s t a b i l i t y  occurs .  I f  Jl does no t  e x i s t  f o r  t h e  f i r s t  i t e r a t i o n ,  

-100- 



t h e  sea rch  process  cannot be i n i t i a t e d  and a new choice  of R must be 

made. Methods f o r  i n i t i a t i n g  t h e  search  process  a t  a po in t  i n  the  para- 

meter space where s t a b i l i t y  can  be guaranteed are d iscussed  i n  Chapter 

111. I f  J1 e x i s t s  but  e i t h e r  J2 or J3 does n o t ,  t he  va lue  of 6 

must be reduced u n t i l  both J2 and J3 e x i s t  before  the  search  process  

can  cont inue .  S ince ,  i n  t h i s  s i t u a t i o n ,  t h e  va lue  of R l i es  near  a 

r eg ion  where 

so t h e  va lue  of r i s  a l s o  halved. I f  J4 does not  e x i s t ,  then 

i s  measured. I f  Js does not  e x i s t  e i t h e r ,  both r and 6 are halved.  

Should J5 be i n f i n i t e  , 
measured only i f  J4 < J1. F i n a l l y ,  i f  e i t h e r  J7 or J8 are measured 

and found t o  be i n f i n i t e ,  both y and 6 are halved and the  approximate 

g r a d i e n t  i s  remeasured. 

- 

- 
J = 00 , t h e  va lue  of aJ/aE i s  l i k e l y  t o  be q u i t e  l a r g e ,  

J6 

Rm+ 1 J5 may be i s  taken as p o i n t  4 because - 

VLn n L - 4 r . n  nq +hr. 4 n ; C i - l  ~ v ~ l v ~ ~ c  
L L A G  C I I I U I b G  U I  L,&LL A & I A C I c C . L  " U I U L Y  fcr y anc! 6 -::as m 2 d e  by trial 

and e r r o r ,  b u t ,  because of t h e i r  adapt ive n a t u r e ,  t h e  choice  w a s  no t  

c r i t i c a l  i n  t h e  examples worked, provided t h a t  they w e r e  no t  chosen too  

low. 
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